Designs, Codes and Cryptography, 11, 207-221 (1997)
© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Universal Hashing and Geometric Codes

JURGEN BIERBRAUER
Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931

Communicated by: D. Jungnickel

Received May 2, 1994; Revised January 10, 1995; Accepted July 1, 1996

Abstract. We describe a new application of algebraic coding theory to universal hashing and authentication
without secrecy. This permits to make use of the hitherto sharpest weapon of coding theory, the construction of
codes from algebraic curves. We show in particular how codes derived from Artin-Schreier curves, Hermitian
curves and Suzuki curves yield classes of universal hash functions which are substantially better than those known
before.
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1. Introduction

The concept of universal classes of hash functions was introduced by Carter and Wegman
in [6]. It has found numerous applications. We mention cryptography, complexity theory,
search algorithms and associative memory (see the Introduction in [15]). Most important
are the following classes (see [16]).

Definition 1. Lete > 0. A multisetX of b functions from &-setC to av-setE is e-almost
strongly universal (short: ASL,) if

1. foreveryu € C andx € E the number of elements &f mappingu — x isb/v,

2. for every pailug, u; € C, u; # Uy, and every paixy, X, € E the number of elements
of ¥ affording the operation; — X, Uz > X2 iS < € - b/v.

Definition 2. Lete > 0. A multisetX of b functions from ak-setC to av-setE is e-
almost universal (short: AU,) if for every pairuy, u; € C, u; # U, the numbes (uy, uy)
of elementsf € T such thatf (u;) = f (u,) satisfies

d(Ug, Up) <e€- b.

We use the language afrays, just as in [3]. Thus &C, E)-array X consists of a set
C of columns,|C| = k, a setE of entries,|E| = v, and is a multiset of cardinalitly of
mappingsC —> E. The elements ok are written as rows of the array.

The notion of ASU, is clearly a generalization of orthogonal arrays of strength 2. In
fact, assume equality always holds in condition 2. of Definition 1. Then the nuinbier
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elements ofz affording the operation; — X;, Uy > X2 iS A = € - b/v. Itis clear that

b = v?A in this case. Thus = 1/v and X is an orthogonal array of strength 2. This
description ofASU-classes as generalizations of orthogonal arrays of strength 2 has been
observed in earlier work. It seems however to have escaped attentioAlthatlasses
admit an even neater description: the columns of&h-class of hash functions form the
words of an error-correcting-ary code. This is an equivalent descriptionAdfl,-classes:

LEMMA 1 Lete > 0O,|C| = k, |[E| = v, £ a (C, E)-array of n functions from C to E.
Then the following are equivalent:

e XY isane — AU; class of hash functions.
e The columns ok form the words of a-ary code of length n with minimum distance

d, where

1-—<e
n

The proof is trivial, but the fact is important. The theoryAf),-classes is nothing but
the theory of error-correcting codes. This shows that the machinery of coding theory may
be used to produce classes of hash functions. Of central importance is the composition-
construction of Stinson’s (see [16]).

Definition 3. Let X; be a(C, E;)-array withb; andX, an (E;, E)-array withb, rows.
Thecompositionz = X, o X is the(C, E)-array withb; - b, rows whose elements are all
the compositiond;, o fi, wheref; € 31, f; € 2s.

In the new notation Stinson’s composition-method A& U,-classes looks as follows:

THEOREM1 (STINSON) If X5 is ane; — ASU class with k columns and entries andx,

is an array whose columns form the words of;agky code of length n with k code words
and minimum distance d such th%\tz 1 — ¢, then the compositioR = ¥, o X is an

e — ASU with k columns ana entries, where

€e=¢€1+ (1l—€1)er < €1+ €.
The composition-construction needs two types of ingredients. Foh8ig-classes we
may use orthogonal arrays. We make use of a family constructed in [1], p. 363:

THEOREM?2 Let g be a prime-power and let,m be natural numbers, m n. Then there
is an

O Am(2.9™, q").

In [16] the construction of this family is simplified. The present author extended the
construction to general([2]). Consider the second ingredient, the error-correcting code.
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We fix the ground-field"y and the relative minimum distandg n of ag-ary code. In fact
the minimum distance has to be extremely large, asl— % plays the role of a probability.
For a fixed numbeM of code-words we ask for the minimum length of such a code.
Definition 4. Let natural numbers, M, and the real numbet O < ¢ < 1 be given. Define
m(e, v, M) as the minimum lengtim of a v-ary code withM codewords and minimum
distanced satisfying

d/n>1—e.

This is a somewhat unusual question in coding theory. Equally unusual is the fact that we
are only interested ig-ary codes with relatively largg. Binary codes are not interesting
at all in our context. Here is the corresponding notion for Afel,-classes:

Definition 5. Let natural numbers, M, and the real number,0 < ¢ < 1 be given.
Definema(e, v, M) as the minimum number of functions of an- ASU, class of hash
functions from arM-set to av-set.

With this terminology Stinson-composition looks as follows:

THEOREM 3 (STINSON-COMPOSITION

Ma(er + €2, v, K) < Maler + (1 — €1)er, v, K) < Mleg, Ky, K) - ma(ez, v, Kp).

2. The Use of Geometric Codes

In order to make Stinson-composition efficient in the constructiolA8f,-classes of
hash-functions, bounds on the functime, g, g¥) are needed.
The monotonicity-properties of the functiomfollow from the definition:

If €1 < €2, thenm(eq, v, M) > m(ez, v, M).
If v1 < vo, thenm(e, vy, M) > M(e, v, M).

If M1 < My, thenm(e, v, M1) < m(e, v, My).
Here are some more basic properties of the funation
m(e, v', M) < m(e, v, M).

This is Stinson’LCartesian product- construction (see [16]). In the case of linear codes
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we may describe this a&xtension of constantsConcatenationof codes yields
m(e1 + €2, v, M) < M(ez, v, My) - M(€1, Mg, M).

In [12] the relation betwee SU-classes and\U,-classes of hash functions is studied.
We note the following main results in our present notation:
If g is a prime-power, then

e mM(e,g,q(q — Dk +0q) < ma(e, g, k)

e ma(e, q,(—Dk+1) <g-ma(e, g, k)

The 2-dimensional Reed-Solomon code shcm(%, g,9% < g. Using the cartesian
product-construction and concatenation of codes recursively one obtains

i 2 i
m(-.d.9 >sq
<q

for every prime-poweqg and everyi > 1. This is a construction of Stinson'’s, expressed

in different words. It is optimal in case= 1, as remarked by Stinson. We want to show
how more sophisticated classes of linear codes, in particular of codes defined on algebraic
curves, may be used to improve this bound considerably, for-alll. It is natural in our
context to use the machinery of geometric codes in the following form:

THEOREM4 (CANONICAL CONSTRUCTION) Let K be a function field of transcendence-
degree 1 (equivalently: an algebraic curve) over the figjdof constants, & Py, ... P,
rational points (equivalently: prime divisors of degree 1) of K. Consider the divisors
D=P+P...+ P,,G=uR. Letwy =0,uy,...,u,...be the pole-orders of An
ascending order. Consider the code

G =C(D,u Py
of functions which are everywhere holomorphic except for a pole of degragat P,
evaluated at P, ... P, (this is the L-construction of [17]). Assume & n. ThenC, has

dimension | and the following hold:

e (; has minimum distance n — u,. Hence

(%0d)zn

We need curves with many rational points and at least one rational Weierstrafl3 point whose
gaps are as large as possible.
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In [14] and [13] a cIasé(é” of function fields defined over an arbitrary finite fieig

of constants is studied, where> 2. HereKé” is a tower of Artin-Schreier extensions of
the rational function field. The following facts are to be found in [13]: The nunitber
of rational points oﬂ(é” is N7 = g" + 1. There is a rational Weierstrall poig whose
semigroup of pole-orders is

r

> 9@+ D' N

i=1

Let>_,aq ' (q+1)'~!be apole-order oPy, & > 0. Define for the moment theeight
of this expression to be = Z{zla,-. It is easily seen that the weight of a pole-order

is uniquely determined ifv < r“%l It is also easily seen that under this assumption the

representation of each pole-order of weighas a linear combination of theg—' (q + 1) ~*

is uniquely determined. The number of pole-orders of weigtis then the number of
distributions ofw undistinguishable objects incells. It is a basic combinatorial fact that
this latter number is

w+r—1
r—1 /)

Assume — 1 < rﬂ—l. Upon using the well-known combinatorial identity

2 ()= (1)
o \m m+1
we see that the number of pole-orders of weiglitis precisely
i(w—i—l’ —1> B (i +r —1>
= r—1 r
If (171 > 2, thenuy < iq"~%, hence

m(i— g qz') <q.
q? 9 —

THEOREM5 Let g be a prime-power, i natural numbers such that

q>(i—1)(r—1),<i+rr_l)32‘.

Then

i 2i> r
m o S .
<q a.q q
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Here are some examples:

e Ifq > 8, then

5 32) 3
m{—.d, =Q-.
(q g.q9 q
e Ifg > 23 then
8
m<a’q’q256> Sq4-

e Ifq > 49 then

12
m (F’ a, q‘“’%) <’

In fact we can get a precise asymptotic statement. Consider the binary entropy-function
H: (0,1) — R,, where

H(xX) = —xlog(x) — (1 — x) log(1 — X).

Here the logarithm is binary. Obsernte(x) = H(1 — x). The following inequality is
well-known in information-theory, see [8]:

2MHI/m) /(4 1)2 < (m) < pmH(/m)
=\,)=

Hence asymptotically

<' +r- 1) o AT —DH(/(+7-1)
.

We fixi and ask for the smalIers.1satisfying(i +rr‘1) > 2'. Asymptotically this is equivalent
to
(+r—DH(— )=
i+r—-1/~
and to
H(——) > —
i+r—1) " i4r—-1
Putx = |+rf—_l Thenwi—_l ~1—X. Letqgg > 0 be the unique solution of the equation
H (do) = Qo.

We may choose such thaix is arbitrarily close to - go. Observe = (i — 1) - %;. We
conclude:
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THEOREMG6 Let ¢ be the unique positive solution of the equation

H (do) = do.

For everye > 0 and sufficiently large i we have

i\
m(=.q.q >sq,
€

wherer= | (i —1)(1—do)/qo — €] and g is an arbitrary prime-power, ¢ (i —1)(r —1).

The numerical values are
Qo =.7729...,(1—qo)/do ~ .2938
We note that the same numbegy appears in the theory @perner capacity,a recently

discovered extension of the conceptSifannon capacityof a graph. Denote by (n) the
maximum cardinality of a family of pair6A;, Bj) of subsets of an-set satisfying

AUB Z AJUBj (i #]),

A N Bj =¢ifand only if i=j.
ThenL (n) ~ 2% " asymptotically inn. This is proved in [9].
For small values off and a quadratic ground-field we obtain improvements by means of
Hermitian codes Consider thédermitian curve defined by the equatio9+* 4 Y4+ +
Z9+1 = 0 over the fieldF. of constants. This curve has gend$ andqg® + 1 rational

points. These form the well-known Hermitian unital. They are all Weierstral3 points. The
semigroup of pole-orders of any of themgBly + (g + 1)Ng. In particular

upy=0,u,=q,u3=q+1,us=2q,...us=39+1,....

By choosind = 4 andl = 8 in the canonical construction we get

2
m (@, o2, qs) <q?

3 1
(3 b=

for every prime-poweq.
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THEOREM7 Let q= p?' be a quadratic prime-power. Then

2
m (5’ a, q“) < g¥?

3 1
m (a + W, q, q8> < q3/2'

Let us consider the distribution of pole-orders in greater detail. @he 1 integers
betweenw -q andw - (q+ 1) are pole-orders. Let us call theweight of such a pole-order.
If w < g, then a pole-order of weight doesn’'t have any smaller weight. The number of
pole-orders of weight wisthen 1+2+ ...+ (w+1) = (’”;2)

LEMMA 2 Let(u)) be the pole-orders of the Hermitian curve olgg, in ascending order.
If w < q,then

U(u/2+1)+1 =w-q

U(w2+2) =w - (q + 1)

In characteristic 2 we get further improvements by using a family of curves which admit
the Suzuki groups as automorphism groups. This family is studied in [11].qLet
22141 qo = 2. The curve is defined ové, by the homogeneous equation

X%(Z9 4 Z X = Yoy 4+ Y XIh),

hasqg? + 1 rational points, genugo(q — 1) and a Weierstral? point whose semigroup of
pole-orders is

aNo + (@ + Go)No + (9 + 290)No + (9 + 2G0 + 1)No.
As before define the weight of the expressieq+a, (q+9o) +as(q+2qo) +a4(q+2gp+1)
tobew =, a. Assumew < go. Then a pole-order of weight cannot have any smaller

weight. Assume it can be written as a linear combination like above in more than one way:

a1q + ax(q + qo) + as(g + 2q0) + a4(q + 2g0 + 1)
= a;q + a5(q + qo) + a5(q + 2q0) + a4(q + 2qo + 1),

where) & =) a = w < ¢o. Putxi =& —&. Then

X10 + X2(q + Qo) + X3(q + 200) + Xa(@ +200+1) =0
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and the sum of the coefficients is zero, hence
Xo0o + 2X30o + X4 (200 + 1) = 0.

It follows qg | X4. We claimx, = 0.

Otherwisex, = =£(qp, and this is possible only ifv = go. We may assume without
restrictionxs = qo, henceay = qo, a3 = a, = a1 = 0, a8y = 0. Factoring outy in the
above equation yields

X2+ 2X3+ 200+ 1=0.

Asx; = —a,, X3 = —a this shows,+2a; = 2qo+1. Using the fact tha; +a,+a5 = o,
we get by subtraction; — a; = 0o + 1, a contradiction.
We have proved, = 0. It follows

Xo + 2X3 = 0.

We conclude that the only ambiguity in the representation of pole-orders of weightjo

is the following: Coefficientgas, az, as, a4) and(ay + X, ax — 2X, az + X, a4) represent

the same pole-ordé€k € Z). The representation becomes unique by choosing {0, 1}.

The same combinatorial fact used above shows that the number of pole-orders of weight
w < qois (37 + ("3Y) = w + D2 Lets = 12+ 22+ ... +i2 Itis well-known that

s = (2 + 1) (i + 1)i/6. It follows that the number of pole-orders of weightw is s, 11,

if w < qp.

LEMMA 3 Let(u;) be the pole-orders of the Suzuki curve digrq = 22f+1 in ascending
order,

§=124+224+...+i2= (2 + 1) +Di/6.
|fw§q0=2f,then
Us,+1 =w-(

We record some low-dimensional cases, which yield improvements on Stinson’s con-
struction:

i Sj bound

2 5 mZ909°)=<0q
3 14 m(g q.9%%) < g2
4 30 m(iq9%) =<0
5 55 m(g q.9%) < ¢?
6 91 m(g q.9%) < g2
7 140 m({,q,9") <o?
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In reality the situation is even better. For example there is not much of a difference between
probabilities3 and 3 + . For practical purposes the second statement of Theorem 7
should there?ore be interpreted as

m w3 8) < %2 ime-
~ q,q, a8 ) < g%? (q a square prime-powger

The same situation occurs regularly when using the canonical construction. The Artin/Schreier-
series yields examples:

6 64) 3
m(~-,q,9*) <q
< q

3. The Use of Deligne-Lusztig Codes for the Construction of Universal Hash Classes

The starting point in the Deligne-Lusztig theory of ordinary representations of finite groups
of Lie type is the study of a certain variety, the Deligne-Lusztig variety, associated to a
connected reductive algebraic gro@defined over a finite field. If5 has Lie rank 1,
then the variety is a projective curve. Thus there are algebraic curves associated with the
2-dimensional linear groups, the 3-dimensional unitary groups, the Suzuki groups and the
Ree groups (see [5], [7], [10]). The corresponding codes obtained via-tmastruction
(see Theorem 4) will be callddeligne-Lusztig codes.The case of the groug3G L(q)
leads to the Reed-Solomon codes. Thus the RS-codes are special cases of Deligne-Lusztig
codes. The Hermitian codes (associated with the grdu@dJz(g?)) and Suzuki codes
(associated witRB,(q), g = 227+1) have been considered in the preceding section. In this
section we will make use of these codes to constABth-classes of hash functions with
a small number of keys (hash functions). It is natural to conjecture that also the Ree curves
will yield good codes and good classes of hash functions. We have not yet been able to
verify this as the Weierstraf3-points and their pole orders seem to be unknown.

We use Stinson-composition (Theorem 1) with the class of orthogonal arrays of Theorem 2
in the role ofX,. In our notation this yields

ma (qim q™, q”) < ™™ (n > m, g a prime-power)

Our aim is to get good upper boundsrmm(q%n, g™, qN), whereN is large with respect to
m. This amounts to authenticating a sourcéoflog, g bits usingm - log, g authenticator
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bits, with deception probability < q% The deception probability can never be smaller
than the reciprocal of the number of authenticators. Moreover, in the case of equality the
ASU-classes of hash functions is an orthogonal array of strength 2. In that case the number
of keys is very large:

qm
It was Wegman & Carter’s crucial observation (see [18]) that the number of keys (of hash
functions) can be dramatically reduced whedn increased just a little bit. We consider the
casec = = whene is the double of the theoretical minimum.

We use the canonical construction (Theorem 4) in its standard form. As we took care to
determine the pole-orders of the Hermitian and Suzuki curves, it suffices to collect the data
given in the preceding section. In the case of Reed-Solomon codes things are easier yet.
The results are as follows:

ma (i,qm,q“‘> >gV@" -1 +1>qV.

THEOREM8 Let q be a prime-power. Then the following holds:
. m(%, q. g% = q for every k> 2.

e Ifw <q,then
w w+1
m (?’ g% g% (" )“}) <q
o Ifq=22"1 gp=2" > w, then

w
m (a’ q, q1+(2w+1)(w+1)w/6) < q2.

Here the items correspond to Reed-Solomon, Hermitian and Suzuki codes. It follows
from the Singleton bound that we have equality in the first case. We make use of Stinson-
composition in the form of Theorem 3. LEf», n > m be the field over which the code is
defined. Asc; = 1/q™ we have to take care thet < 1/q™. The result is as follows:

THEOREM9 Let g be a prime-power, nm natural numbers. Then the following hold:

2 n—m
1. Ma (q_m’ qm’ qn(l+q )> < q2n+m
(m < n).
2 m ~n{1+g""M(q""M+1)/2} 5n/2+m
2- mA q_ma q ) q S q

(m < n < 2m, q" a square).
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3 m 1 om 2n{1+(2”*"‘+1+1)(2”*'"+1)2"*"‘/6} < 23n+m
. A 2m71» ’ —

(m<n<2m-1 n odd).

Let us compare the three methods (Reed-Solomon=RS, Hermite=H, Suzuki=S) of Theo-
rem 9inthe binary case. We are thus looking for boundn@ﬁzm%l, 2m 2Ny, Denote by log
the binary logarithm, put = log(N). When using the RS-method, we have to determine
n = ngrsfrom the equatior = log(n(1 + 2"~™)). This is approximately equivalent with
Nrs= L+m—log(ngrs). Inthe case ofthe H-and S-method wemgt~ % L+m+%
andng ~ %L +m+ w respectively. Heren < ny <2m,m < ng < 2m— 1.
The H-method needs less bits than the RS-method as sooik gs-45ny . By substituting
the above values ofrsandny and puttingigrs = « - ny we see that this is equivalent with

L 2m+|o (n )+5+8Io ()
> - -+ = .
3 g(ny 373 gla

Certainly logm) < log(hy) < 1+ log(m). Furthermore we have a priori bounds on
a: in fact we are assuming > 5/4, and by equating the two expressions fbmwe get
Nrs2™Rs™™M &2 Ny 22 —M—1 equivalentlyy a2 2@-M-m-1 > 5/4 |t follows (2—a)Ny —
m—1=>log5> 2, hence 25 < o < 1.5. We see that the H-method needs less key than
the RS-method as soon as

2
L > ém + log(m) + Cm,

wherecy, is a small constant, approximately2< ¢, < 4.3. The H-method is best as long
asitis applicable, i.e. up tb = 2m + log(m). From then on the S-method is better.

What happens for even larger sources, when the S-method is no longer applicable in the
form of Theorem 9, i.e. wheh > 3m + log(m)? If we use the Artin-Schreier curvda('\‘é”
as introduced before Theorem 5 in the same spirit as Deligne-Lusztig curves were used
in Theorem 9, then let us speak of tA& -method,r > 3 (the case = 2 is in fact not
interesting). Moreover we can use geometric codes for arbitrarily large dimensions. Instead
of the canonical construction of Theorem 4 we use then the equatien + 1+ g, where
g is the genus of the curve in question. It turns out that this variant is never best possible
when applied to the Hermite curves or tA& -curves. In the case of Suzuki curves, let
us call this theS, -method. The following is the result of the (trivial) analysis when we
compare all these methods in cdse- 3m + log(m). Here we omit the summand 1Gg)
as well as some small additive constant:

e If3m < L < 14m (approximately), then th&, -method is best.
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e For14m < L < 20m (approximately), method S, is best.

e ForlargerL methodAS (r > 4) will be best among the constructions considered here
for approximatelyr —Lr m<L <r(r +21)-m.

We close with some explicit examples, which are applications of Theorem 9. Here
m=20,q=2:

Example 1:

1. ma(2719,220,22%) < 272,
2. mA(2719 220 2235) < pl10

3. mA(2719 220 2250) < D125

In the first casel( = 10), the RS-method is best. In faggs = 26, ny = 22, ng = 23.
The H-method needs- 22+ 20 = 75 bits, the S-method needs 33+ 20 = 89 bits.

In the second casé (= 35) we haveny = 36, and the H-method is best. The RS- and
S-method need 120 and 113 bits, respectively.

In casel. = 50, the H-method is no longer applicable. We hage= 35. It follows that
the S-method needs 35+ 20 = 125 bits, which is better than the RS-methogd § = 64,
needs 148 bits).

We restate the last inequality in a more familiar language: It is possible to authenticate a
2%0-pit source with 20 authenticator bits and 125 bits of key such that the probabilities of
success of an impersonation- or substitution-attack are bounded-hy 2

Finally let us consider the practicality of the construction. For simplicity we concentrate
on the case of Example 1,1. The source has size The use of Stinson composition
implies that our family of hash functions is the composition of a fardilpf functions:

22" — 226 ynd a family B of functions: 26 — 220, For B we took the 26 rows
of the orthogonal array Aga(2, 2%, 22%) of Theorem 2. More explicitly the elements
of B are pairs(8, y), whereg € Fxs, y € Fao. The entry in row(s, y), and column
x € Fxs of the orthogonal array i© (8 - X) + y, where® is a fixedF,-linear mapping:
Fp2e —> Fozo.

For A we took the coordinate functions of the 40-dimensidR&code ovellfxs. Thus
each element oA is an elementr € F,s, and each source state is a polynonpéak)
of degree< 39 with coefficients irf,s. The hash functions are tripl€s, 8, y), where
o, B € Fus, y € Foo. Thus 26+ 26 + 20 = 72 random bits are needed to choose a hash
function uniformly at random. The corresponding hashed value is

P(p(a) - B) +y € Fao.

We need field arithmetic iz, but only addition irff ;2. The fieldF,2s should be seen as an
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extension of,. The mappingb may be chosen as projection onto the first 20 coordinates,
say.

Conclusion

We have seen that the theory of almost univerdal{—) classes of hash functions is equiv-
alent with the theory of error-correcting codes. The mechanism of geometric codes imposes
precise conditions on algebraic curves to yidld,— classes of hash functions which can
be efficiently used as one of the two ingredients in Stinson’s compaosition-construction for
almost strongly universalXSU,—) classes of hash functions. Most importantly we saw
that Deligne-Lusztig curves and certain Artin-Schreier curves allow the construction of
ASU— classes of hash functions which use much less key space than the methods which
had hitherto been used.

Part of the material of this paper was used in a joint publication with T. Johansson,
G. Kabatianskii and B. Smeets [4] for CRYPTO 93. In particular the method of Theorem 9
is inspired by the use my coauthors in [4] make of Reed-Solomon codes.
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