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Abstract. We describe a new application of algebraic coding theory to universal hashing and authentication
without secrecy. This permits to make use of the hitherto sharpest weapon of coding theory, the construction of
codes from algebraic curves. We show in particular how codes derived from Artin-Schreier curves, Hermitian
curves and Suzuki curves yield classes of universal hash functions which are substantially better than those known
before.
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1. Introduction

The concept of universal classes of hash functions was introduced by Carter and Wegman
in [6]. It has found numerous applications. We mention cryptography, complexity theory,
search algorithms and associative memory (see the Introduction in [15]). Most important
are the following classes (see [16]).

Definition 1. Let ε > 0. A multiset6 of b functions from ak-setC to av-setE is ε-almost
strongly universal2 (short: ASU2) if

1. for everyu ∈ C andx ∈ E the number of elements of6 mappingu 7→ x is b/v,

2. for every pairu1, u2 ∈ C, u1 6= u2, and every pairx1, x2 ∈ E the number of elements
of 6 affording the operationu1 7→ x1, u2 7→ x2 is≤ ε · b/v.

Definition 2. Let ε > 0. A multiset6 of b functions from ak-setC to av-set E is ε-
almost universal2 (short: AU2) if for every pairu1, u2 ∈ C, u1 6= u2 the numberδ(u1, u2)

of elementsf ∈ 6 such thatf (u1) = f (u2) satisfies

δ(u1, u2) ≤ ε · b.

We use the language ofarrays, just as in [3]. Thus a(C, E)-array6 consists of a set
C of columns,|C| = k, a setE of entries,|E| = v, and is a multiset of cardinalityb of
mappingsC −→ E. The elements of6 are written as rows of the array.

The notion ofASU2 is clearly a generalization of orthogonal arrays of strength 2. In
fact, assume equality always holds in condition 2. of Definition 1. Then the numberλ of
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elements of6 affording the operationu1 7→ x1, u2 7→ x2 is λ = ε · b/v. It is clear that
b = v2λ in this case. Thusε = 1/v and6 is an orthogonal array of strength 2. This
description ofASU2-classes as generalizations of orthogonal arrays of strength 2 has been
observed in earlier work. It seems however to have escaped attention thatAU2-classes
admit an even neater description: the columns of anAU2-class of hash functions form the
words of an error-correctingv-ary code. This is an equivalent description ofAU2-classes:

LEMMA 1 Let ε > 0, |C| = k, |E| = v,6 a (C, E)-array of n functions from C to E.
Then the following are equivalent:

• 6 is anε − AU2 class of hash functions.

• The columns of6 form the words of av-ary code of length n with minimum distance
d, where

1− d

n
≤ ε.

The proof is trivial, but the fact is important. The theory ofAU2-classes is nothing but
the theory of error-correcting codes. This shows that the machinery of coding theory may
be used to produce classes of hash functions. Of central importance is the composition-
construction of Stinson’s (see [16]).

Definition 3. Let 61 be a(C, E1)-array withb1 and62 an (E1, E)-array withb2 rows.
Thecomposition6 = 62 ◦61 is the(C, E)-array withb1 · b2 rows whose elements are all
the compositionsf2 ◦ f1, where f1 ∈ 61, f2 ∈ 62.

In the new notation Stinson’s composition-method forASU2-classes looks as follows:

THEOREM1 (STINSON) If 62 is anε2− ASU2 class with k1 columns andv entries and61

is an array whose columns form the words of a k1-ary code of length n with k code words
and minimum distance d such thatd

n ≥ 1− ε1, then the composition6 = 62 ◦ 61 is an
ε − ASU2 with k columns andv entries, where

ε = ε1+ (1− ε1)ε2 < ε1+ ε2.

The composition-construction needs two types of ingredients. For theASU2-classes we
may use orthogonal arrays. We make use of a family constructed in [1], p. 363:

THEOREM2 Let q be a prime-power and let m, n be natural numbers, m≥ n. Then there
is an

O Aqm−n(2,qm,qn).

In [16] the construction of this family is simplified. The present author extended the
construction to generalt ([2]). Consider the second ingredient, the error-correcting code.
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We fix the ground-fieldFq and the relative minimum distanced/n of aq-ary code. In fact
the minimum distance has to be extremely large, asε = 1− d

n plays the role of a probability.
For a fixed numberM of code-words we ask for the minimum length of such a code.

Definition 4. Let natural numbersv,M , and the real numberε, 0< ε < 1 be given. Define
m(ε, v,M) as the minimum lengthn of a v-ary code withM codewords and minimum
distanced satisfying

d/n ≥ 1− ε.

This is a somewhat unusual question in coding theory. Equally unusual is the fact that we
are only interested inq-ary codes with relatively largeq. Binary codes are not interesting
at all in our context. Here is the corresponding notion for theASU2-classes:

Definition 5. Let natural numbersv,M , and the real numberε, 0 < ε < 1 be given.
DefinemA(ε, v,M) as the minimum number of functions of anε − ASU2 class of hash
functions from anM-set to av-set.

With this terminology Stinson-composition looks as follows:

THEOREM3 (STINSON-COMPOSITION)

mA(ε1+ ε2, v, k) ≤ mA(ε1+ (1− ε1)ε2, v, k) ≤ m(ε1, k1, k) ·mA(ε2, v, k1).

2. The Use of Geometric Codes

In order to make Stinson-composition efficient in the construction ofASU2-classes of
hash-functions, bounds on the functionm(ε,q,qk) are needed.

The monotonicity-properties of the functionm follow from the definition:

If ε1 < ε2, thenm(ε1, v,M) ≥ m(ε2, v,M).

If v1 < v2, thenm(ε, v1,M) ≥ m(ε, v2,M).

If M1 < M2, thenm(ε, v,M1) ≤ m(ε, v,M2).

Here are some more basic properties of the functionm:

m(ε, vi ,Mi ) ≤ m(ε, v,M).

This is Stinson’sCartesian product- construction (see [16]). In the case of linear codes
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we may describe this asextension of constants. Concatenationof codes yields

m(ε1+ ε2, v,M) ≤ m(ε2, v,M1) ·m(ε1,M1,M).

In [12] the relation betweenASU2-classes andAU2-classes of hash functions is studied.
We note the following main results in our present notation:

If q is a prime-power, then

• m(ε,q,q(q − 1)k+ q) ≤ mA(ε,q, k)

• mA(ε,q, (q − 1)k+ 1) ≤ q ·mA(ε,q, k)

The 2-dimensional Reed-Solomon code showsm( 1
q ,q,q

2) ≤ q. Using the cartesian
product-construction and concatenation of codes recursively one obtains

m

(
i

q
,q,q2i

)
≤ qi

for every prime-powerq and everyi ≥ 1. This is a construction of Stinson’s, expressed
in different words. It is optimal in casei = 1, as remarked by Stinson. We want to show
how more sophisticated classes of linear codes, in particular of codes defined on algebraic
curves, may be used to improve this bound considerably, for alli > 1. It is natural in our
context to use the machinery of geometric codes in the following form:

THEOREM4 (CANONICAL CONSTRUCTION) Let K be a function field of transcendence-
degree 1 (equivalently: an algebraic curve) over the fieldFq of constants, P0, P1, . . . Pn

rational points (equivalently: prime divisors of degree 1) of K . Consider the divisors
D = P1 + P2 . . . + Pn,G = u P0. Let u1 = 0, u2, . . . ,ul , . . . be the pole-orders of P0 in
ascending order. Consider the code

Cl = C(D, ul P0)

of functions which are everywhere holomorphic except for a pole of degree≤ ul at P0,
evaluated at P1, . . . Pn (this is the L-construction of [17]). Assume ul < n. ThenCl has
dimension l and the following hold:

• Cl has minimum distance≥ n− ul . Hence

m
(ul

n
,q,ql

)
≤ n.

We need curves with many rational points and at least one rational Weierstraß point whose
gaps are as large as possible.
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In [14] and [13] a classK (r )
q of function fields defined over an arbitrary finite fieldFq

of constants is studied, wherer ≥ 2. HereK (r )
q is a tower of Artin-Schreier extensions of

the rational function field. The following facts are to be found in [13]: The numberN1

of rational points ofK (r )
q is N1 = qr + 1. There is a rational Weierstraß pointP0 whose

semigroup of pole-orders is

r∑
i=1

qr−i (q + 1)i−1N0.

Let
∑r

i=1 ai qr−i (q+1)i−1 be a pole-order ofP0,ai ≥ 0. Define for the moment theweight
of this expression to bew = ∑r

i=1 ai . It is easily seen that the weightw of a pole-order
is uniquely determined ifw <

q
r−1. It is also easily seen that under this assumption the

representation of each pole-order of weightw as a linear combination of theqr−i (q+1)i−1

is uniquely determined. The number of pole-orders of weightw is then the number of
distributions ofw undistinguishable objects inr cells. It is a basic combinatorial fact that
this latter number is(

w + r − 1

r − 1

)
.

Assumei − 1< q
r−1. Upon using the well-known combinatorial identity

n∑
j=m

(
j

m

)
=
(

n+ 1

m+ 1

)
we see that the number of pole-orders of weight< i is precisely

i−1∑
w=0

(
w + r − 1

r − 1

)
=
(

i + r − 1

r

)
.

If
(i+r−1

r

) ≥ 2i , thenu2i < iqr−1, hence

m

(
i

q
,q,q2i

)
≤ qr .

THEOREM5 Let q be a prime-power, i, r natural numbers such that

q > (i − 1)(r − 1),

(
i + r − 1

r

)
≥ 2i .

Then

m

(
i

q
,q,q2i

)
≤ qr .
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Here are some examples:

• If q > 8, then

m

(
5

q
,q,q32

)
≤ q3.

• If q ≥ 23, then

m

(
8

q
,q,q256

)
≤ q4.

• If q ≥ 49, then

m

(
12

q
,q,q4096

)
≤ q5.

In fact we can get a precise asymptotic statement. Consider the binary entropy-function
H : (0, 1) −→ R+, where

H(x) = −x log(x)− (1− x) log(1− x).

Here the logarithm is binary. ObserveH(x) = H(1− x). The following inequality is
well-known in information-theory, see [8]:

2mH(l/m)/(m+ 1)2 ≤
(

m

l

)
≤ 2mH(l/m).

Hence asymptotically(
i + r − 1

r

)
∼ 2(i+r−1)H(r/(i+r−1)).

We fix i and ask for the smallestr satisfying
(i+r−1

r

) ≥ 2i . Asymptotically this is equivalent
to

(i + r − 1)H

(
r

i + r − 1

)
≥ i

and to

H

(
r

i + r − 1

)
≥ i

i + r − 1
.

Putx = r
i+r−1. Then i

i+r−1 ∼ 1− x. Let q0 > 0 be the unique solution of the equation

H(q0) = q0.

We may chooser such thatx is arbitrarily close to 1− q0. Observer = (i − 1) · x
1−x . We

conclude:
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THEOREM6 Let q0 be the unique positive solution of the equation

H(q0) = q0.

For everyε > 0 and sufficiently large i we have

m

(
i

q
,q,q2i

)
≤ qr ,

where r= b(i −1)(1−q0)/q0− εc and q is an arbitrary prime-power, q> (i −1)(r −1).

The numerical values are

q0 = .7729. . . , (1− q0)/q0 ≈ .2938

We note that the same numberq0 appears in the theory ofSperner capacity,a recently
discovered extension of the concept ofShannon capacityof a graph. Denote byL(n) the
maximum cardinality of a family of pairs(Ai , Bi ) of subsets of ann-set satisfying

Ai ∪ Bi 6⊆ Aj ∪ Bj (i 6= j ),

Ai ∩ Bj = ∅ if and only if i=j.

ThenL(n) ∼ 2q0·n asymptotically inn. This is proved in [9].
For small values ofi and a quadratic ground-field we obtain improvements by means of

Hermitian codes. Consider theHermitian curve defined by the equationXq+1+Yq+1+
Zq+1 = 0 over the fieldFq2 of constants. This curve has genus

(q
2

)
andq3 + 1 rational

points. These form the well-known Hermitian unital. They are all Weierstraß points. The
semigroup of pole-orders of any of them isqN0+ (q + 1)N0. In particular

u1 = 0, u2 = q, u3 = q + 1, u4 = 2q, . . .u8 = 3q + 1, . . . .

By choosingl = 4 andl = 8 in the canonical construction we get

m

(
2

q2
,q2,q8

)
≤ q3,

m

(
3

q2
+ 1

q3
,q2,q16

)
≤ q3

for every prime-powerq.
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THEOREM7 Let q= p2 f be a quadratic prime-power. Then

m

(
2

q
,q,q4

)
≤ q3/2

m

(
3

q
+ 1

q3/2
,q,q8

)
≤ q3/2.

Let us consider the distribution of pole-orders in greater detail. Thew + 1 integers
betweenw ·q andw · (q+1) are pole-orders. Let us callw theweight of such a pole-order.
If w ≤ q, then a pole-order of weightw doesn’t have any smaller weight. The number of
pole-orders of weight≤ w is then 1+ 2+ . . .+ (w + 1) = (w+2

2

)
.

LEMMA 2 Let (ul ) be the pole-orders of the Hermitian curve overFq2, in ascending order.
If w ≤ q, then

u(w+1
2 )+1 = w · q

u(w+2
2 )
= w · (q + 1).

In characteristic 2 we get further improvements by using a family of curves which admit
the Suzuki groups as automorphism groups. This family is studied in [11]. Letq =
22 f+1,q0 = 2 f . The curve is defined overFq by the homogeneous equation

Xq0(Zq + Z Xq−1) = Yq0(Yq + Y Xq−1),

hasq2 + 1 rational points, genusq0(q − 1) and a Weierstraß point whose semigroup of
pole-orders is

qN0+ (q + q0)N0+ (q + 2q0)N0+ (q + 2q0+ 1)N0.

As before define the weight of the expressiona1q+a2(q+q0)+a3(q+2q0)+a4(q+2q0+1)
to bew =∑i ai . Assumew ≤ q0. Then a pole-order of weightw cannot have any smaller
weight. Assume it can be written as a linear combination like above in more than one way:

a1q + a2(q + q0)+ a3(q + 2q0)+ a4(q + 2q0+ 1)

= a′1q + a′2(q + q0)+ a′3(q + 2q0)+ a′4(q + 2q0+ 1),

where
∑

ai =
∑

a′i = w ≤ q0. Putxi = ai − a′i . Then

x1q + x2(q + q0)+ x3(q + 2q0)+ x4(q + 2q0+ 1) = 0
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and the sum of the coefficients is zero, hence

x2q0+ 2x3q0+ x4(2q0+ 1) = 0.

It follows q0 | x4. We claimx4 = 0.
Otherwisex4 = ±q0, and this is possible only ifw = q0. We may assume without

restrictionx4 = q0, hencea4 = q0,a3 = a2 = a1 = 0,a′4 = 0. Factoring outq0 in the
above equation yields

x2+ 2x3+ 2q0+ 1= 0.

Asx2 = −a′2, x3 = −a′3 this showsa′2+2a′3 = 2q0+1. Using the fact thata′1+a′2+a′3 = q0,
we get by subtractiona′3− a′1 = q0+ 1, a contradiction.

We have provedx4 = 0. It follows

x2+ 2x3 = 0.

We conclude that the only ambiguity in the representation of pole-orders of weightw ≤ q0

is the following: Coefficients(a1,a2,a3,a4) and(a1 + x,a2 − 2x,a3 + x,a4) represent
the same pole-order(x ∈ Z). The representation becomes unique by choosinga2 ∈ {0, 1}.
The same combinatorial fact used above shows that the number of pole-orders of weight
w ≤ q0 is

(
w+2

2

) + (w+1
2

) = (w + 1)2. Let si = 12 + 22 + . . . + i 2. It is well-known that
si = (2i + 1)(i + 1)i /6. It follows that the number of pole-orders of weight≤ w is sw+1,
if w ≤ q0.

LEMMA 3 Let(ul ) be the pole-orders of the Suzuki curve overFq,q = 22 f+1, in ascending
order,

si = 12+ 22+ · · · + i 2 = (2i + 1)(i + 1)i /6.

If w ≤ q0 = 2 f , then

usw+1 = w · q

We record some low-dimensional cases, which yield improvements on Stinson’s con-
struction:

i si bound

2 5 m
(

2
q ,q,q

6
) ≤ q2

3 14 m
(

3
q ,q,q

15
) ≤ q2

4 30 m
(

4
q ,q,q

31
) ≤ q2

5 55 m
(

5
q ,q,q

56
) ≤ q2

6 91 m
(

6
q ,q,q

92
) ≤ q2

7 140 m
(

7
q ,q,q

141
) ≤ q2
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In reality the situation is even better. For example there is not much of a difference between
probabilities 3

q2 and 3
q2 + 1

q3 . For practical purposes the second statement of Theorem 7
should therefore be interpreted as

m

(
≈ 3

q
,q,q8

)
≤ q3/2 (q a square prime-power).

The same situation occurs regularly when using the canonical construction. The Artin/Schreier-
series yields examples:

m

(
≈ 6

q
,q,q64

)
≤ q3

m

(
≈ 9

q
,q,q512

)
≤ q4.

3. The Use of Deligne-Lusztig Codes for the Construction of Universal Hash Classes

The starting point in the Deligne-Lusztig theory of ordinary representations of finite groups
of Lie type is the study of a certain variety, the Deligne-Lusztig variety, associated to a
connected reductive algebraic groupG defined over a finite field. IfG has Lie rank 1,
then the variety is a projective curve. Thus there are algebraic curves associated with the
2-dimensional linear groups, the 3-dimensional unitary groups, the Suzuki groups and the
Ree groups (see [5], [7], [10]). The corresponding codes obtained via theL-construction
(see Theorem 4) will be calledDeligne-Lusztig codes.The case of the groupsPGL2(q)
leads to the Reed-Solomon codes. Thus the RS-codes are special cases of Deligne-Lusztig
codes. The Hermitian codes (associated with the groupsPGU3(q2)) and Suzuki codes
(associated with2B2(q),q = 22 f+1) have been considered in the preceding section. In this
section we will make use of these codes to constructASU2-classes of hash functions with
a small number of keys (hash functions). It is natural to conjecture that also the Ree curves
will yield good codes and good classes of hash functions. We have not yet been able to
verify this as the Weierstraß-points and their pole orders seem to be unknown.

We use Stinson-composition (Theorem 1) with the class of orthogonal arrays of Theorem 2
in the role of62. In our notation this yields

mA

(
1

qm
,qm,qn

)
≤ qn+m (n ≥ m,q a prime-power).

Our aim is to get good upper bounds onmA(
2

qm ,qm,qN), whereN is large with respect to
m. This amounts to authenticating a source ofN · log2 q bits usingm · log2 q authenticator
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bits, with deception probabilityε ≤ 2
qm . The deception probability can never be smaller

than the reciprocal of the number of authenticators. Moreover, in the case of equality the
ASU2-classes of hash functions is an orthogonal array of strength 2. In that case the number
of keys is very large:

mA

(
1

qm
,qm,qN

)
≥ qN(qm − 1)+ 1> qN .

It was Wegman & Carter’s crucial observation (see [18]) that the number of keys (of hash
functions) can be dramatically reduced whenε is increased just a little bit. We consider the
caseε = 2

qm whenε is the double of the theoretical minimum.
We use the canonical construction (Theorem 4) in its standard form. As we took care to

determine the pole-orders of the Hermitian and Suzuki curves, it suffices to collect the data
given in the preceding section. In the case of Reed-Solomon codes things are easier yet.
The results are as follows:

THEOREM8 Let q be a prime-power. Then the following holds:

• m( k−1
q ,q,qk) = q for every k≥ 2.

• If w ≤ q, then

m

(
w

q2
,q2,q2{(w+1

2 )+1}
)
≤ q3

• If q = 22 f+1,q0 = 2 f ≥ w, then

m

(
w

q
,q,q1+(2w+1)(w+1)w/6

)
≤ q2.

Here the items correspond to Reed-Solomon, Hermitian and Suzuki codes. It follows
from the Singleton bound that we have equality in the first case. We make use of Stinson-
composition in the form of Theorem 3. LetFqn, n ≥ m be the field over which the code is
defined. Asε2 = 1/qm we have to take care thatε1 ≤ 1/qm. The result is as follows:

THEOREM9 Let q be a prime-power, m, n natural numbers. Then the following hold:

1. mA

(
2

qm
,qm,qn(1+qn−m)

)
≤ q2n+m

(m≤ n).

2. mA

(
2

qm
,qm,qn{1+qn−m(qn−m+1)/2}

)
≤ q5n/2+m

(m≤ n ≤ 2m,qn a square).
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3. mA

(
1

2m−1
, 2m, 2n{1+(2n−m+1+1)(2n−m+1)2n−m/6}

)
≤ 23n+m

(m≤ n ≤ 2m− 1, n odd).

Let us compare the three methods (Reed-Solomon=RS, Hermite=H, Suzuki=S) of Theo-
rem 9 in the binary case. We are thus looking for bounds onmA(

1
2m−1 , 2m, 2N). Denote by log

the binary logarithm, putL = log(N). When using the RS-method, we have to determine
n = nRS from the equationL = log(n(1+ 2n−m)). This is approximately equivalent with
nRS= L+m−log(nRS). In the case of the H- and S-method we getnH ≈ 1

2 L+m+ 1−log(nH )

2

andnS ≈ 1
3 L +m+ log 3−log(nS)

3 , respectively. Herem ≤ nH ≤ 2m,m ≤ nS ≤ 2m− 1.
The H-method needs less bits than the RS-method as soon as 4nRS> 5nH . By substituting
the above values ofnRSandnH and puttingnRS= α ·nH we see that this is equivalent with

L >
2

3
m+ log(nH )+ 5

3
+ 8

3
log(α).

Certainly log(m) ≤ log(nH ) ≤ 1 + log(m). Furthermore we have a priori bounds on
α: in fact we are assumingα ≥ 5/4, and by equating the two expressions forN we get
nRS2nRS−m ≈ nH 22(nH−m)−1, equivalentlyα ≈ 2(2−α)nH−m−1 ≥ 5/4. It follows(2−α)nH−
m− 1 ≥ log 5> 2, hence 1.25≤ α < 1.5. We see that the H-method needs less key than
the RS-method as soon as

L >
2

3
m+ log(m)+ cm,

wherecm is a small constant, approximately 2.4< cm < 4.3. The H-method is best as long
as it is applicable, i.e. up toL = 2m+ log(m). From then on the S-method is better.

What happens for even larger sources, when the S-method is no longer applicable in the
form of Theorem 9, i.e. whenL > 3m+ log(m)? If we use the Artin-Schreier curvesK (r )

q
as introduced before Theorem 5 in the same spirit as Deligne-Lusztig curves were used
in Theorem 9, then let us speak of theASr -method,r ≥ 3 (the caser = 2 is in fact not
interesting). Moreover we can use geometric codes for arbitrarily large dimensions. Instead
of the canonical construction of Theorem 4 we use then the equationul = l +1+ g, where
g is the genus of the curve in question. It turns out that this variant is never best possible
when applied to the Hermite curves or theASr -curves. In the case of Suzuki curves, let
us call this theS+-method. The following is the result of the (trivial) analysis when we
compare all these methods in caseL > 3m+ log(m). Here we omit the summand log(m)
as well as some small additive constant:

• If 3m≤ L ≤ 14m (approximately), then theS+-method is best.
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• For 14m≤ L ≤ 20m (approximately), methodAS4 is best.

• For largerL methodASr (r > 4) will be best among the constructions considered here
for approximately(r − 1)r ·m≤ L ≤ r (r + 1) ·m.

We close with some explicit examples, which are applications of Theorem 9. Here
m= 20,q = 2:

Example 1:

1. mA(2−19, 220, 2210
) ≤ 272.

2. mA(2−19, 220, 2235
) ≤ 2110.

3. mA(2−19, 220, 2250
) ≤ 2125.

In the first case (L = 10), the RS-method is best. In factnRS= 26, nH = 22, nS = 23.
The H-method needs52 · 22+ 20= 75 bits, the S-method needs 3· 23+ 20= 89 bits.

In the second case (L = 35) we havenH = 36, and the H-method is best. The RS- and
S-method need 120 and 113 bits, respectively.

In caseL = 50, the H-method is no longer applicable. We havenS = 35. It follows that
the S-method needs 3· 35+ 20= 125 bits, which is better than the RS-method (nRS= 64,
needs 148 bits).

We restate the last inequality in a more familiar language: It is possible to authenticate a
250-bit source with 20 authenticator bits and 125 bits of key such that the probabilities of
success of an impersonation- or substitution-attack are bounded by 2−19.

Finally let us consider the practicality of the construction. For simplicity we concentrate
on the case of Example 1,1. The source has size 2210

. The use of Stinson composition
implies that our family of hash functions is the composition of a familyA of functions:
2210 −→ 226 und a family B of functions: 226 −→ 220. For B we took the 246 rows
of the orthogonal arrayO A64(2, 226, 220) of Theorem 2. More explicitly the elements
of B are pairs(β, γ ), whereβ ∈ F226, γ ∈ F220. The entry in row(β, γ ), and column
x ∈ F226 of the orthogonal array is8(β · x) + γ , where8 is a fixedF2-linear mapping:
F226 −→ F220.

For A we took the coordinate functions of the 40-dimensionalRS-code overF226. Thus
each element ofA is an elementα ∈ F226, and each source state is a polynomialp(X)
of degree≤ 39 with coefficients inF226. The hash functions are triples(α, β, γ ), where
α, β ∈ F226, γ ∈ F220. Thus 26+ 26+ 20= 72 random bits are needed to choose a hash
function uniformly at random. The corresponding hashed value is

8(p(α) · β)+ γ ∈ F220.

We need field arithmetic inF226, but only addition inF220. The fieldF226 should be seen as an
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extension ofF2. The mapping8may be chosen as projection onto the first 20 coordinates,
say.

Conclusion

We have seen that the theory of almost universal (AU2−) classes of hash functions is equiv-
alent with the theory of error-correcting codes. The mechanism of geometric codes imposes
precise conditions on algebraic curves to yieldAU2− classes of hash functions which can
be efficiently used as one of the two ingredients in Stinson’s composition-construction for
almost strongly universal (ASU2−) classes of hash functions. Most importantly we saw
that Deligne-Lusztig curves and certain Artin-Schreier curves allow the construction of
ASU2− classes of hash functions which use much less key space than the methods which
had hitherto been used.

Part of the material of this paper was used in a joint publication with T. Johansson,
G. Kabatianskii and B. Smeets [4] for CRYPTO 93. In particular the method of Theorem 9
is inspired by the use my coauthors in [4] make of Reed-Solomon codes.
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