Number of different degree sequences of a graph with no isolated vertices

Axel Kohnert
Bayreuth University
kohnert@uni-bayreuth.de
www.mathe2.uni-bayreuth.de
Example
Example

7 different degree sequences
A partition is a weakly decreasing sequence of non-negative integers, where almost all numbers are zero.

\[\lambda = 3, 3, 2, 2, 1, 1, 0, \ldots \]
A partition is a weakly decreasing sequence of non-negative integers, where almost all numbers are zero.

\[\lambda = 3, 3, 2, 2, 1, 1, 0, \ldots \]

The weight of a partition is the sum over this sequence.

\[|\lambda| = 12 \]
A partition is a weakly decreasing sequence of non-negative integers, where almost all numbers are zero.

\[\lambda = 3, 3, 2, 2, 1, 1, 0, \ldots \]

The weight of a partition is the sum over this sequence.

\[|\lambda| = 12 \]

The length of a partition is the number of nonzero parts.

\[l(\lambda) = 6 \]
Ferrers Diagram

Partitions are visualized by left adjusted boxes in the first quadrant.
Ferrers Diagram

Partitions are visualized by left adjusted boxes in the first quadrant.
Conjugate Partition

The *conjugate* partition λ' is the sequence of numbers of boxes in the columns.
Conjugate Partition

The *conjugate* partition λ' is the sequence of numbers of boxes in the columns.

```
  6
  4
  2
```
The *conjugate* partition λ' is the sequence of numbers of boxes in the columns.

$6, 4, 2 = (3, 3, 2, 2, 1, 1)'$
A partition λ is called *graphical*, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ.
A partition λ is called \textit{graphical}, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ.

- graphical partitions only exist for even weight
A partition λ is called *graphical*, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ.

- Graphical partitions only exist for even weight
- Not all even weight partitions are graphical
Example
Example

Number of different degree sequences of a graph with no isolated vertices – p.7/21
Example

\[
\begin{array}{c}
3 \\
2
\end{array}
\begin{array}{c}
3 \\
2
\end{array}
\begin{array}{c}
3 \\
2
\end{array}
\begin{array}{c}
3 \\
1
\end{array}
\begin{array}{c}
1
\end{array}
\]

\[3,3,2,2,1,1\]
Problem

We want

\[g(n) := \text{number of graphical partitions of length } n. \]
Problem

We want

\[g(n) := \text{number of graphical partitions of length } n. \]

For general partitions only useful in the case of a maximal size of parts \((< n)\)
Problem

We want

$$g(n) := \text{number of graphical partitions of length } n.$$

For general partitions only useful in the case of a maximal size of parts ($< n$)
Durfee square $= (2, 2)$
Durfee

Durfee square = \((2, 2)\)
Durfee size = 2
Durfee Decomposition
Durfee Decomposition
Durfee Decomposition

\[L = (4, 2) \]
\[R = (2, 2) \]
Dominance Order

The 'natural' partial order on partitions. Let \(\mu, \nu \) be two partitions

\[
\mu \geq \nu : \iff \forall k \geq 1 : \sum_{i=1}^{k} \mu_i \geq \sum_{i=1}^{k} \nu_i
\]
Dominance Order

The 'natural' partial order on partitions. Let μ, ν be two partitions

\[\mu \trianglerighteq \nu : \iff \forall k \geq 1 : \sum_{i=1}^{k} \mu_i \geq \sum_{i=1}^{k} \nu_i \]

Dominance order is compatible with graphical partitions:

\[\nu \text{ graphical, } \mu \trianglerighteq \nu \Rightarrow \mu \text{ graphical} \]
Theorem:
A partition λ of even weight is graphical

\Leftrightarrow

$L(\lambda) \supseteq R(\lambda)$
Recursion Formula (1)

\[G(n) := \text{set of graphical partitions of length } n \]
\[G_s(n) := \text{set of graphical partitions of length } n \]
\[\text{and maximal part of size } s \]

\[G(n) = G_1(n) \cup \ldots \cup G_{n-1}(n) \]
Recursion Formula (1)

\[G(n) := \text{set of graphical partitions of length } n \]
\[G_s(n) := \text{set of graphical partitions of length } n \]

and maximal part of size \(s \)

\[G(n) = G_1(n) \cup \ldots \cup G_{n-1}(n) \]

Each \(G_s(n) \) is decomposed into disjoint subsets according to the weight

\[G_s(n) = G_{s,2}(n) \cup \ldots \cup G_{s,n^*}(n-1)(n) \]
Recursion Formula (2)

Each set $G_{s,w}(n)$ is decomposed according to the size of the Durfee square

$$G_{s,w}(n) = G_{s,w,1}(n) \cup \ldots \cup G_{s,w,n-1}(n)$$
Recursion Formula (2)

Each set $G_{s,w}(n)$ is decomposed according to the size of the Durfee square

$$G_{s,w}(n) = G_{s,w,1}(n) \cup \ldots \cup G_{s,w,n-1}(n)$$

From the Durfee decomposition and the criterion we get a bijection:

$$G_{s,w,d}(n) \leftrightarrow \{ (\mu, \nu) \ with \ 1 \leq l(\mu) \leq d, \mu_1 = n - d, l(\nu) = id \}.$$

$$|\nu| + |\mu| = n - (d - 1) \ast d$$
Recursion Formula (3)

\[P(s_1, l_1, w_1, l_2, w_2) := \text{pairs } (\mu, \nu) \text{ with } \]
\[\mu \succeq \nu, \mu_1 = s_1 \]
\[l(\mu) = l_1, |\mu| = w_1 \]
\[l(\nu) = l_2, |\nu| = w_2 \]
Recursion Formula (3)

\[P(s_1, l_1, w_1, l_2, w_2) := \text{pairs} \ (\mu, \nu) \text{ with} \]
\[\mu \geq \nu, \ \mu_1 = s_1 \]
\[l(\mu) = l_1, |\mu| = w_1 \]
\[l(\nu) = l_2, |\nu| = w_2 \]

rewrite above recursion with \(r = n - (d - 1) \times d \):

\[G_{s,w,d}(n) \longleftrightarrow \bigcup_{j = 1, \ldots, d} P(n - d, j, l, d, r - l) \]
\[l = 0, \ldots, r \]
Recursion Formula (4)
Recursion Formula (4)
Recursion Formula (4)

\[P(s_1, l_1, w_1, l_2, w_2) \]
Recursion Formula (4)

\[P(s_1, l_1, w_1, l_2, w_2) \]

\[\bigcup_{i = 0, \ldots, l_1} \bigcup_{j = 0, \ldots, l_2} P(s_1 - 1, i, w_1 - l_1, j, w_2 - l_2) \]
Product Formula

We count pairs $\mu \geq \nu$, with certain properties
We count pairs $\mu \triangleright \nu$, with certain properties
Unique minimal partition μ^-, unique maximal partition ν^+.
Product Formula

We count pairs $\mu \trianglerighteq \nu$, with certain properties
Unique minimal partition μ^-, unique maximal partition ν^+.
If $\mu^- \trianglerighteq \nu^+$ then (with $p(\ldots) = |P(\ldots)|$)

$$p(s_1, l_1, w_1, l_2, w_2) = p(s_1, l_1, w_1, 0, 0) \left(\sum_{i=1, \ldots, w_2-l_2+1} p(i, l_2, w_2, 0, 0) \right).$$
Results

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(4), \ldots$</td>
<td>$g(19)$</td>
<td>$g(20), \ldots$</td>
</tr>
<tr>
<td>7</td>
<td>162769</td>
<td>7429.160296</td>
</tr>
<tr>
<td>20</td>
<td>614198</td>
<td>28723.877732</td>
</tr>
<tr>
<td>71</td>
<td>2.330537</td>
<td>111236.423288</td>
</tr>
<tr>
<td>240</td>
<td>8.875768</td>
<td>431403.470222</td>
</tr>
<tr>
<td>871</td>
<td>33.924859</td>
<td></td>
</tr>
<tr>
<td>3148</td>
<td>130.038230</td>
<td></td>
</tr>
<tr>
<td>11655</td>
<td>499.753855</td>
<td></td>
</tr>
<tr>
<td>43332</td>
<td>1924.912894</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>$g(4),\ldots$</th>
<th>$\ldots g(19)$</th>
<th>$g(20),\ldots$</th>
<th>$g(28),\ldots, g(34)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>162769</td>
<td>7429.160296</td>
<td>385.312558.571890</td>
</tr>
<tr>
<td>20</td>
<td>614198</td>
<td>28723.877732</td>
<td>1504.105116.253904</td>
</tr>
<tr>
<td>71</td>
<td>2.330537</td>
<td>111236.423288</td>
<td>5876.236938.019298</td>
</tr>
<tr>
<td>240</td>
<td>8.875768</td>
<td>431403.470222</td>
<td>22974.847399.695092</td>
</tr>
<tr>
<td>871</td>
<td>33.924859</td>
<td>1.675316.535350</td>
<td>89891.104720.825873</td>
</tr>
<tr>
<td>3148</td>
<td>130.038230</td>
<td>6.513837.679610</td>
<td>351942.828583.179792</td>
</tr>
<tr>
<td>11655</td>
<td>499.753855</td>
<td>25.354842.100894</td>
<td>1.378799.828613.947813</td>
</tr>
<tr>
<td>43332</td>
<td>1924.912894</td>
<td>98.794053.269694</td>
<td></td>
</tr>
</tbody>
</table>
Concluding Remarks

Limiting factors:

memory to store intermediate results

time if you do not store intermediate results
References

- Sierksma, Hoogeveen: Seven Criteria for Integer Sequences being Graphic, J. Graph Theory, 1991.
- N. Sloane: online database of integer sequences, number A095268