Extension of Good Linear Codes

Axel Kohnert
Ischia June 2006

Bayreuth University Germany
axel.kohnert@uni-bayreuth.de
http://linearcodes.uni-bayreuth.de
A linear \([n, k; q]\) code \(C\) is a \(k\)–dimensional subspace \(< GF(q)^n\).

The codewords are the vectors of the subspace \(C\).

All codewords are of length \(n\), the letters are from the alphabet \(GF(q)\).
A generator matrix Γ of a linear $[n, k; q]$ code C is a $k \times n$ matrix where each row is a basis element of the code C.

$$C = \{v\Gamma : v \in GF(q)^k\}$$

Encoding is easy, just multiplication by the generator matrix.
Minimum Distance

Error correction capability of C is measured by the minimum distance d. Computation of the minimum distance is easy for a linear code, it is the minimum weight of all codewords.
Minimum Weight Generator

We are interested in the codewords \(\{c_1, \ldots, c_s\} \) of minimum weight.

The vectors \(\{v_1, \ldots, v_s\} \in GF(q)^k \) with:

\[
v_i \Gamma = c_i
\]

are called the minimum weight generator.
Good Codes

We speak of a good code, if it is a linear code which has the highest known minimum distance d, for fixed n, k, q.

There are tables available for the highest known minimum distance.
Best Codes

typical situation, same d for several n
We try to build new good (or even better) codes having minimum distance $d + 1$ and larger length $n + l$ using known good codes of length n and minimum distance d. We only look at the minimum weight codewords as all other nonzero codewords are of weight $\geq d + 1$.

\textit{l—Extension}
We try to find \(l \) new columns, which we add to the generator matrix.

For each vector \(v \) in the minimum weight generator there must be at least one new column \(\gamma \) such that \(\langle v, \gamma \rangle \neq 0 \).

This crucial property can be formulated using an intersection matrix.
Intersection Matrix

\[\gamma \in GF(q)^k \]

\[\downarrow \]

\[M = \begin{bmatrix} M_{\nu,\gamma} \end{bmatrix} \quad \leftarrow \nu \in \text{Minimum weight generator} \]

\[M_{\nu,\gamma} = \begin{cases} 0 & \langle \nu, \gamma \rangle = 0 \\ 1 & \langle \nu, \gamma \rangle \neq 0 \end{cases} \]
We try to find l columns of the intersection matrix, such that their sum is a vector with no zero entries. This is equivalent to a solution of the following Diophantine system of inequalities/equation:
Diophantine System of Equations

We are interested in a $0/1$ solution $x = (x_1, \ldots, x_{q^k-1})$ of the system

\[
\begin{array}{c|c|c|c}
M & x & \geq 1 & \geq 1 \\
1 \ldots 1 & \vdots & \vdots & \\
1 \ldots 1 & & = l \\
\end{array}
\]

Theorem: There is $[n + l, k; q]$ code with minimum distance $> d \iff$ there is a solution of the above Diophantine system.
The matrix M is part (selection of rows) of the incidence matrix of the finite projective geometry $PG(k - 1, q)$.

The property of being an l–extension can be formulated in the language of finite projective geometry.
For example we found a new $[n = 82, k = 8, d = 49; q = 3]$ code, which is 2—extension of a previously computed good $[80, 8, 48; 3]$ code with 1320 codewords of minimum weight. Among all possible pairs we found a covering pair.

This new code can 2 times be extended using 1—extension, giving also new $[83, 8, 50; 3]$ and $[84, 8, 51; 3]$ codes. For the last one we apply again 2—extension and afterwards 1—extension and get new $[86, 8, 53; 3]$ and $[87, 9, 54; 3]$ codes.
Other newly found codes using \$l\$–extension are:

\[[130, 8, 79; 3] \]

\[[187, 6, 135; 4], [197, 6, 142; 4], [212, 6, 153; 4], [227, 6, 165; 4], [232, 6, 169; 4], [242, 6, 177; 4], [247, 6, 181; 4] \]

\[[191, 7, 134; 4], [192, 7, 135; 4] \]

here we do not list the derived codes. All these codes are improvements of Brouwers table.
Thank you very much for your attention.

- A. Wassermann: Talk at Combinatorics 2004
- list of new codes including generator matrix and weight enumerator:
 http://linearcodes.uni-bayreuth.de
- A. E. Brouwer has a list of good codes:
 http://www.win.tue.nl/~aeb/