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ABSTRACT. We give an effective construction for Erdös-Diophantine graphs and charac-
terize the chromatic number of Diophantine carpets.

1. INTRODUCTION

A Diophantine figure, see i.e. [4, 5, 6], is a set of points on the integer gridZ2 where
all mutual Euclidean distances are integers. We also speak ofDiophantine graphs. The
vertices are points inZ2 (the coordinates) and the edges are labeled with the distance
between the two adjacent vertices, which is integral. In this language a Diophantine figure
is a complete Diophantine graph. Two Diophantine graphs are equivalent if they only differ
by translation or rotation of vertices. Due to a famous theorem of Erdös and Anning [1]
there are complete Diophantine graphs which are not contained in larger ones. We call
themErdös-Diophantine graphs. We will give a proof of this theorem as we need it for an
algorithm later on.

Theorem 1.1. (Erdös, Anning 1945[1])
Infinitely many points in the plane with pairwise integral distances are collinear.

Proof. Let A, B, andC be three non collinear points and letk = max(AC, BC). Then
there are at most4(k + 1)2 points P such that the differences of Euclidean distances
PA−PB andPB−PC are integers. We see this as follows: Due to the triangle inequality
we have|PA − PB| ≤ AB ≤ k. Thus|PA − PB| ∈ {0, 1, . . . , k}. SoP is on one of
k + 1 hyperbolas. Analog we have thatP is situated also on one ofk + 1 hyperbolas
throughB andC. Because two distinct hyperbolas intersect in at most4 points, there are
at most4(k + 1)2 pointsP . �

A special class of Diophantine graphs areDiophantine carpets[2, 7]. These are planar
triangulations of a subset of the integer grid.

2. PROBLEMS

The authors of [5] have posed some open problems for Diophantine graphs and Dio-
phantine carpets which we would like to solve in this section.

2.1. Pythagorean triangles. Let us denote byχ(l) the number of all Pythagorean trian-
gles with hypothenusel ∈ N. The question in [5] was to determine the asymptotic of the
functionχ(l) whenl →∞.
Due to Jacobi (1828) we haveχ(l) = d1,4(l) − d3,4(l) wheredr,n(l) denotes the number
of divisors (including1 and l) of n which are congruent tor modulon, see i.e. [9]. So
χ(l) ∈ O(nε) for ε > 0, see [8] for a deeper analysis of the divisor function.
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2.2. Erdös-Diophantine triangles. Are there Erdös-Diophantine triangles and is there
an effective algorithm to determine all integer pointsP which extend a given Diophantine
triangle (= complete Diophantine graph of3 points) to a complete Diophantine graph of4
points?
For such an effective algorithm we can use Theorem 1.1. For the given integral points
A = (a1, a2), B = (b1, b2), andC = (c1, c2) we have the following system of equations
for a forth pointP = (x, y) being the intersection of two hyperbolas.

√
(x− a1)2 + (y − a2)2 −

√
(x− c1)2 + (y − c2)2 = d1√

(x− b1)2 + (y − b2)2 −
√

(x− c1)2 + (y − c2)2 = d2

Due to the proof of theorem 1.1 we have−AC ≤ d1 ≤ AC and−BC ≤ d2 ≤ BC for
d1, d2 ∈ Z. Thus we can solve the corresponding(2AC + 1)(2BC + 1) equation systems
to determine the possible pointsP .
To answer the first question we loop over all Heronian triples, which are not Pythagorean.
(Pythagorean triples can be extended) Heronian triples are triples of edge lengths, which
correspond to an triangle of rational area. The restriction in search to the Heronian triples
comes from the fact that triangles in theZ2 lattice are always of rational area as the area is
the half of the determinant: ∣∣∣∣∣∣

a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣ .

Compute in the next step all possible embeddings of such a triple intoZ2 and let an im-
plementation of the above described algorithm search for possible fourth nodes. If we fail
to find a fourth node we found a Erdös-Diophantine triangle. We experimentally noticed
that there are very rare, but we found seven examples with edge lengths:

(2066, 1803, 505)
(2549, 2307, 1492)
(3796, 2787, 2165)
(4083, 2425, 1706)
(4426, 2807, 1745)
(4801, 2593, 2210)
(4920, 4177, 985)

.

This is a complete list of Erdös-Diophantine triangles having an edge of length≤ 5000.

2.3. Further Erdös-Diophantine Graphs. In [4] the following two Diophantine figures
were depicted, which the author believed to be Erdös-Diophantine graphs.



A NOTE ON ERDÖS-DIOPHANTINE GRAPHS AND DIOPHANTINE CARPETS 3

0,0 3,0−3,0

0,4

0,−4

0,12

9,0

9,24 16,24

16,0

25,12

With the above algorithm we checked their conjectures, and proved them.

2.4. Erdös-Diophantine Tetrahedrons. In [5] Pythagorean-Diophantine pyramids were
defined as sets of four points with integer coordinates, integral edge lengths and three faces
being Pythagorean triangles. They asked for Erdös Pythagorean-Diophantine pyramids.
We slightly generalize their definition and search for tetrahedrons with coordinates inZ3

and integral edge lengths, integral face areas and integral volume. These objects are called
Diophantine tetrahedrons. In the case that there is no further point inZ3 having integral
distance to the vertices of the tetrahedron, we call itErdös Diophantine tetrahedron.

For four pointsA = (a1, a2, a3), B = (b1, b2, b3), C = (c1, c2, c3), and D =
(d1, d2, d3) of a Diophantine tetrahedron we have the following system of equations for
a fifth pointP = (x, y, z) being the intersection of three hyperboloids.√

(x− a1)2 + (y − a2)2 + (z − a3)2 −
√

(x− d1)2 + (y − d2)2 + (z − d3)2 = e1√
(x− b1)2 + (y − b2)2 + (z − b3)2 −

√
(x− d1)2 + (y − d2)2 + (z − d3)2 = e2√

(x− c1)2 + (y − c2)2 + (z − c3)2 −
√

(x− d1)2 + (y − d2)2 + (z − d3)2 = e3

Using a variant of the above algorithm we did an extensive search and found several solu-
tions. We give the coordinates ofB,C,D where the first pointA is always the origin. We
found the following Erdös-Diophantine Tetrahedrons: 396 132 99

288 −84 0
176 0 0

,

 432 144 108
336 −48 20
297 0 0

,

 528 396 121
468 204 −423
144 108 −135

 , 540 180 135
336 252 0
400 0 0

,

 624 468 0
648 360 −189
660 264 −77

,

 672 104 0
672 0 0
600 0 135

 , 672 104 0
672 −104 0
600 0 135

,

 672 153 104
672 0 104
672 0 0

,

 672 153 104
672 −153 104
672 0 0

.

2.5. Chromatic number of Diophantine carpets. We now examine the coloring prob-
lem for Diophantine carpets. Clearly the chromatic number is1 iff the carpet consists of
union of non-connected triangles. Given a Diophantine carpetC we define a graphC∗ by
replacing the triangles by nodes which are adjacent iff the corresponding triangles share a
common side. This is the dual graph of the planar graph without a node for the outer face.
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As C is a triangulation, each node inC∗ has maximal degree3. A graphG is bipartite iff
it contains no odd cycle [3]. For the remaining cases the chromatic number is3. As the
chromatic number is according to the theorem of Brooks[3] bound by the maximal degree.
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