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We consider the Hermitian varietiesH(2n + 1, q2). An ovoidO is a set of points
of H(2n + 1, q2) such that every generator ofH(2n + 1, q2) meets the setO in
exactly one point.

A lot of research has been done to prove the existence or non-existence of
ovoids of classical polar spaces. One of the open cases is the Hermitian variety
H(2n + 1, q2). Forn = 1, every Hermitian curveH(2, q2) contained inH(3, q2)
constitutes an ovoid ofH(3, q2), and even different examples can be found. On the
other hand, no Hermitian varietyH(2n + 1, q2), n ≥ 2, having ovoids is known.
Furthermore, it is known ([3]) thatH(2n + 1, q2), q = ph, p prime, has no ovoid
when
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.

From this it follows that for each primep there exists an integernp such that
H(2n+1, q2), with n ≥ np, has no ovoid. All obtained integersnp are larger than
two. Thus, for no polar spaceH(5, q2), the problem on the existence of an ovoid
has been solved. We present a combinatorial approach, using similar arguments as
in [2], that shows thatH(5, 4) has no ovoid.
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