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Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected
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Lemma

Existence of a linear k-dimensional code over Fq with blocklength
n and minimum distance d

m

Existence of a (multi-)set P of n points in PG (k − 1, q) so that for
every hyperplane H holds: |H ∩ P| ≤ n − d.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group



Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Corollary

The search of linear (n, k, d , q)-codes is equivalent to looking for
solutions of the following diophantine (in-)equation system:

Mk
q x ≤


n − d
n − d

...
n − d


1T x = n

where x ∈ Nm
0 and Mk

q is the m ×m incidence matrix between
points (columns) and hyperplanes (rows) in PG (k − 1, q).

Problem: m gets huge very fast!
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Basic definitions
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Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points

⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.
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(0 0 1)⊥ 0 1 0 0 1 0 0 1 0 0 1 0 0

(0 1 0)⊥ 1 0 0 0 1 1 1 0 0 0 0 0 0

(0 1 1)⊥ 0 0 0 1 1 0 0 0 0 1 0 1 0

(0 1 2)⊥ 0 0 1 0 1 0 0 0 1 0 0 0 1

(1 0 0)⊥ 1 1 1 1 0 0 0 0 0 0 0 0 0

(1 0 1)⊥ 0 1 0 0 0 0 1 0 0 1 0 0 1

(1 0 2)⊥ 0 1 0 0 0 1 0 0 1 0 0 1 0

(1 1 0)⊥ 1 0 0 0 0 0 0 0 0 0 1 1 1

(1 1 1)⊥ 0 0 0 1 0 0 1 0 1 0 1 0 0

(1 1 2)⊥ 0 0 1 0 0 1 0 0 0 1 1 0 0

(1 2 0)⊥ 1 0 0 0 0 0 0 1 1 1 0 0 0

(1 2 1)⊥ 0 0 1 0 0 0 1 1 0 0 0 1 0

(1 2 2)⊥ 0 0 0 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1
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Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

The reduced system:
1 1 0 2 0
2 1 1 0 0
1 0 1 1 1
0 3 0 0 1
0 1 2 1 0

 · x ≤


n − d
n − d
n − d
n − d
n − d


(

3 3 3 3 1
)

· x = n
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Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A heuristic solution algorithm:

Input: (In-)equation system of type

Ax ≤ c (indices 0 . . .m − 1)
B x = d (index m) ,

with x ∈ Nn
0, A ∈ Nm×n, c ∈ Nm, B ∈ N1×n

+ , d ∈ N+.

Output: solution of the system or ’search failed’

Remark: algorithm can easily be generalized to other
problems.
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Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Set all variables to zero.

Look at LHS[m]

LHS[m] < RHS[m] LHS[m] > RHS[m]LHS[m] = RHS[m]

 Backtracking  possible?Is the current x a solution? no

update LHS[0..m]

Choose a variable to 
  be increased by 1.

update LHS[0..m]

yes

no

Search failed, stop.

yes

Print solution, stop.
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Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal
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do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal
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Pseudocode for a single sample run:

for (int i=0; i<=m; i++){ //restore initial LHS
LHS[i]=initialLHS[i];

}
while(LHS[m]<RHS[m]){ //increase vars randomly

randomly choose a variable w;
increase w by 1;
update LHS[0],LHS[1],...,LHS[m-1],LHS[m];

}
if (LHS[m]==RHS[m]){ //update counters

for (i=0; i<m; i++){
if (LHS[i]<=RHS[i]){

counter[i]++;
}

}
}
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With the method presented we could construct the following new
linear binary codes:

k = 11 :

n d

41 16
73 32
81 34

136 62
139 64
146 66
149 68
155 72

k = 12 :

n d

74 32
83 34
99 42

102 44
107 46
110 48
140 64

k = 13 :

n d

41 14
155 68
158 70
161 72

(entries in boldface belong to optimal codes)
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Thanks for your attention!
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