Heuristic Construction of Linear Codes with prescribed Automorphism Group

Johannes Zwanzger
University of Bayreuth

Soria Summer School July 2008
(1) Basic definitions

2 Diophantine inequations in coding theory
(3) Prescription of automorphisms
(4) A heuristic solution algorithm
(5) Results

- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- weight $w t(c)$ of $c \in C$: number of nonzero components in c
- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- weight $w t(c)$ of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c^{\prime} \in C$: $\operatorname{dist}\left(c, c^{\prime}\right):=w t\left(c-c^{\prime}\right)$
- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- weight $w t(c)$ of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c^{\prime} \in C$: $\operatorname{dist}\left(c, c^{\prime}\right):=w t\left(c-c^{\prime}\right)$
- The minimum distance of C is the minimum Hamming distance between any two different codewords of C.
- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- weight $w t(c)$ of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c^{\prime} \in C$: $\operatorname{dist}\left(c, c^{\prime}\right):=w t\left(c-c^{\prime}\right)$
- The minimum distance of C is the minimum Hamming distance between any two different codewords of C.
- C has minimum distance $d \Rightarrow$ up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors can be corrected

Lemma

Existence of a linear k-dimensional code over \mathbb{F}_{q} with blocklength n and minimum distance d

Existence of a (multi-)set P of n points in $P G(k-1, q)$ so that for every hyperplane H holds: $|H \cap P| \leq n-d$.

Corollary

The search of linear (n, k, d, q)-codes is equivalent to looking for solutions of the following diophantine (in-)equation system:
where $x \in \mathbb{N}_{0}^{m}$ and M_{q}^{k} is the $m \times m$ incidence matrix between points (columns) and hyperplanes (rows) in $\operatorname{PG}(k-1, q)$.

Corollary

The search of linear (n, k, d, q)-codes is equivalent to looking for solutions of the following diophantine (in-)equation system:
where $x \in \mathbb{N}_{0}^{m}$ and M_{q}^{k} is the $m \times m$ incidence matrix between points (columns) and hyperplanes (rows) in $\operatorname{PG}(k-1, q)$.

Problem: m gets huge very fast!

A possible approach:

A possible approach:

- Prescribe a subgroup A of $\operatorname{PGL}(k, q)$ which must be contained in the automorphism group of the point (multi-) set P

A possible approach:

- Prescribe a subgroup A of $\operatorname{PGL}(k, q)$ which must be contained in the automorphism group of the point (multi-) set P
- $a \in P G L(k, q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$

A possible approach:

- Prescribe a subgroup A of $\operatorname{PGL}(k, q)$ which must be contained in the automorphism group of the point (multi-) set P
- $a \in P G L(k, q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of $P G(k-1, q)$, we now select complete orbits under the action of A on the points

A possible approach:

- Prescribe a subgroup A of $\operatorname{PGL}(k, q)$ which must be contained in the automorphism group of the point (multi-)set P
- $a \in P G L(k, q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of $P G(k-1, q)$, we now select complete orbits under the action of A on the points \Rightarrow number of variables is reduced to the number of orbits

A possible approach:

- Prescribe a subgroup A of $\operatorname{PGL}(k, q)$ which must be contained in the automorphism group of the point (multi-)set P
- $a \in P G L(k, q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of $P G(k-1, q)$, we now select complete orbits under the action of A on the points \Rightarrow number of variables is reduced to the number of orbits
- Let p be a point of $P G(k-1, q), H$ be a hyperplane and $a \in A$. Then we have: $p \in H \Leftrightarrow a(p) \in a(H)$.

A possible approach:

- Prescribe a subgroup A of $\operatorname{PGL}(k, q)$ which must be contained in the automorphism group of the point (multi-)set P
- $a \in P G L(k, q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of $P G(k-1, q)$, we now select complete orbits under the action of A on the points \Rightarrow number of variables is reduced to the number of orbits
- Let p be a point of $P G(k-1, q), H$ be a hyperplane and $a \in A$. Then we have: $p \in H \Leftrightarrow a(p) \in a(H)$.
\Rightarrow number of equations is reduced to the number of orbits of A on the hyperplanes.

Example $(\mathrm{q}=3, \mathrm{k}=3)$

	0 0 1	0 1 0	0 1 1	0 1 2	0	1 0 1	1 0 2	1 1 0	1 1 1	1 1 2	1 2 0	2	1 2 2
$(001)^{\perp}$	0	1	0	0	1	0	0	1	0	0	1	0	0
$(010)^{\perp}$	1	0	0	0	1	1	1	0	0	0	0	0	0
$(011)^{\perp}$	0	0	0	1	1	0	0	0	0	1	0	1	0
$(012)^{\perp}$	0	0	1	0	1	0	0	0	1	0	0	0	1
$(100)^{\perp}$	1	1	1	1	0	0	0	0	0	0	0	0	0
$(101)^{\perp}$	0	1	0	0	0	0	1	0	0	1	0	0	1
$(102)^{\perp}$	0	1	0	0	0	1	0	0	1	0	0	1	0
$(110)^{\perp}$	1	0	0	0	0	0	0	0	0	0	1	1	1
$(111)^{\perp}$	0	0	0	1	0	0	1	0	1	0	1	0	0
$(112)^{\perp}$	0	0	1	0	0	1	0	0	0	1	1	0	0
$(120)^{\perp}$	1	0	0	0	0	0	0	1	1	1	0	0	0
$(121)^{\perp}$	0	0	1	0	0	0	1	1	0	0	0		0
$(122)^{\perp}$	0	0	0	1	0	1	0	1	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	1

Example $(\mathrm{q}=3, \mathrm{k}=3)$

$A=\left\langle\left(\begin{array}{lll} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1 \end{array}\right)\right\rangle$	0 0 1	0 1 0	0 1 1	0 1 2	0	1 0 1	1 0 2	1 1 0	1	1 1 2	1 2 0	1 2 1	1 2 2
(001) ${ }^{\text {¢ }}$	0	1	0	0	1	0	0	1	0	0	1	0	0
$(010)^{\perp}$	1	0	0	0	1	1	1	0	0	0	0	0	0
$(011)^{\perp}$	0	0	0	1	1	0	0	0	0	1	0	1	0
$(012)^{\perp}$	0	0	1	0	1	0	0	0	1	0	0	0	1
$(100)^{\perp}$	1	1	1	1	0	0	0	0	0	0	0	0	0
$(101)^{\perp}$	0	1	0	0	0	0	1	0	0	1	0	0	1
$(102)^{\perp}$	0	1	0	0	0	1	0	0	1	0	0	1	0
$(110)^{\perp}$	1	0	0	0	0	0	0	0	0	0	1	1	1
$(111)^{\perp}$	0	0	0	1	0	0	1	0	1	0	1	0	0
$(112)^{\perp}$	0	0	1	0	0	1	0	0	0	1	1	0	0
$\left(\begin{array}{lll}1 & 0\end{array}\right)^{\perp}$	1	0	0	0	0	0	0	1	1	1	0	0	0
$(121)^{\perp}$	0	0	1	0	0	0	1	1	0	0	0		0
$(122)^{\perp}$	0	0	0	1	0	1	0	1	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	1

Example $(\mathrm{q}=3, \mathrm{k}=3)$

$A=\left\langle\left(\begin{array}{lll} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1 \end{array}\right)\right\rangle$	0 0 1	0 1 0	0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	0	1 0 1	0	1 1 0	1	1 1 2	1 2 0	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & \hline \end{aligned}$	1 2 2
(001) ${ }^{\text {¢ }}$	0	1	0	0	1	0	0	1	0	0	1	0	0
$(010)^{\perp}$	1	0	0	0	1	1	1	0	0	0	0	0	0
$(011)^{\perp}$	0	0	0	1	1	0	0	0	0	1	0	1	0
$(012)^{\perp}$	0	0	1	0	1	0	0	0	1	0	0	0	1
$(100)^{\perp}$	1	1	1	1	0	0	0	0	0	0	0	0	0
$(101)^{\perp}$	0	1	0	0	0	0	1	0	0	1	0	0	1
$(102)^{\perp}$	0	1	0	0	0	1	0	0	1	0	0	1	0
$(110)^{\perp}$	1	0	0	0	0	0	0	0	0	0	1	1	1
$(111)^{\perp}$	0	0	0	1	0	0	1	0	1	0	1	0	0
$(112)^{\perp}$	0	0	1	0	0	1	0	0	0	1	1	0	0
$(120)^{\perp}$	1	0	0	0	0	0	0	1	1	1	0	0	
$(121)^{\perp}$	0	0	1	0	0	0	1	1	0	0	0	1	
$(122)^{\perp}$	0	0	0	1	0	1	0	1	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	

Example $(q=3, k=3)$

	0 0 1	0 1 1	1 0 0		2	0 1 2	0	1 1 1	1 1 0	1 2 0	1 2 1	1 1 2
(001) ${ }^{\perp}$		1			.		0			2		0
$(010)^{\perp}$		2			,		1			0		0
$(011)^{\perp}$		1			0		1			1		1
$(012)^{\perp}$		2			,		1			0		0
$(100)^{\perp}$		2			,		1			0		0
$(101)^{\perp}$		0					0			0		1
$(102)^{\perp}$		0			,		2			1		0
$(110)^{\perp}$		1			,		0			2		0
$(111)^{\perp}$		0			,		2			1		0
$(112)^{\perp}$		1					1			1		1
$(120)^{\perp}$		1			0		1			1		1
$(121)^{\perp}$		1					0			2		0
$(122)^{\perp}$		0			.		2			1		0
		3			,		3			3		1

Example $(\mathrm{q}=3, \mathrm{k}=3)$

	0	0 1 1	0 1 0	0	1 2 2	0 1 2	1	1 1 0	1 2 0	1 2 1	1
$\left(\begin{array}{llll}0 & 1\end{array}\right)^{\perp}$		1		1			0		2		0
$(010)^{\perp}$		2		1					0		0
$(011)^{\perp}$		1		0			1		1		1
$(012)^{\perp}$		2		1			1		0		0
$(100)^{\perp}$		2		1			1		0		0
$(101)^{\perp}$		0		3			0		0		1
$(102)^{\perp}$		0		1			2		1		0
$(110)^{\perp}$		1		1			0		2		0
$(111)^{\perp}$		0		1			2		1		0
$(112)^{\perp}$		1		0			1		1		1
$(120)^{\perp}$		1		0			1		1		1
$(121)^{\perp}$		1		1			0		2		0
$(122)^{\perp}$		0		1			2		1		0
		3		3			3		3		1

Example $(\mathrm{q}=3, \mathrm{k}=3)$

$\left(A^{-1}\right)=\left\langle\left(\begin{array}{lll}0 & 2 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)\right\rangle$	0 0 1	0 1 1	0 1 0	1 0 2	1 2 2	$\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 2 & 1\end{array}$		$\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 0 & 0\end{array}$	2	1 1 2
(001) ${ }^{\text {- }}$		1		1		0		2	2	0
$(010)^{\perp}$		2		1		1		0	0	0
$(011)^{\perp}$		1		0		1		1		1
$(012)^{\perp}$		2		1		1		0	0	0
$(100)^{\perp}$		2		1		1		0	0	0
$(101)^{\perp}$		0		3		0		0	0	1
$(102)^{\perp}$		0		1		2		1		0
$(110)^{\perp}$		1		1		0		2		0
$\binom{1}{1}^{\perp}$		0		1		2		1	1	0
$(112)^{\perp}$		1		0		1		1	,	1
$\left(\begin{array}{lll}1 & 0\end{array}\right)^{\perp}$		1		0		1		1	,	1
$(121)^{\perp}$		1		1		0		2	2	0
$(122)^{\perp}$		0		1		2		1	,	0
		3		3		3		3		1

Example $(\mathrm{q}=3, \mathrm{k}=3)$

$\left(A^{-1}\right)=\left\langle\left(\begin{array}{lll}0 & 2 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)\right\rangle$	0 0 1	0 1 1	0 1 0	1 0 2	1 2 2	0 1 1 0 2 1		$\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 0 & 0\end{array}$	1 2 1	1 1 2
(001)		1		1		0		2		0
$(010)^{\perp}$		2		1		1		0)	0
$(011)^{\perp}$		1		0		1		1		1
$(012)^{\perp}$		2		1		1		0	0	0
$(100)^{\perp}$		2		1		1		0	0	0
$\left(\begin{array}{llll}1 & 1\end{array}\right)^{\perp}$		0		3		0		0	0	1
$(102)^{\perp}$		0		1		2		1	,	0
$(110)^{\perp}$		1		1		0		2	2	0
$(111)^{\perp}$		0		1		2		1	1	0
$(112)^{\perp}$		1		0		1		1	1	1
$(120)^{\perp}$		1		0		1		1	1	1
$(121)^{\perp}$		1		1		0		2	2	0
$(122)^{\perp}$		0		1		2		1	1	0
		3		3		3		3	3	1

Example ($q=3, k=3$)

The reduced system:

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 1 & 0 & 2 & 0 \\
2 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 3 & 0 & 0 & 1 \\
0 & 1 & 2 & 1 & 0
\end{array}\right) \quad x \leq\left(\begin{array}{l}
n-d \\
n-d \\
n-d \\
n-d \\
n-d
\end{array}\right) \\
& \left(\begin{array}{lllll}
3 & 3 & 3 & 3 & 1
\end{array}\right) \quad x=\quad x
\end{aligned}
$$

A heuristic solution algorithm:

A heuristic solution algorithm:

- Input: (In-)equation system of type

$$
\begin{gathered}
A x \leq c \quad(\text { indices } 0 \ldots m-1) \\
B x=d \quad(\text { index } m) \\
\text { with } x \in \mathbb{N}_{0}^{n}, A \in \mathbb{N}^{m \times n}, c \in \mathbb{N}^{m}, B \in \mathbb{N}_{+}^{1 \times n}, d \in \mathbb{N}_{+} .
\end{gathered}
$$

A heuristic solution algorithm:

- Input: (In-)equation system of type

$$
\begin{gathered}
A x \leq c \quad(\text { indices } 0 \ldots m-1) \\
B x=d \quad(\text { index } m) \\
\text { with } x \in \mathbb{N}_{0}^{n}, A \in \mathbb{N}^{m \times n}, c \in \mathbb{N}^{m}, B \in \mathbb{N}_{+}^{1 \times n}, d \in \mathbb{N}_{+} .
\end{gathered}
$$

- Output: solution of the system or 'search failed'

A heuristic solution algorithm:

- Input: (In-)equation system of type

$$
\begin{gathered}
A x \leq c \quad(\text { indices } 0 \ldots m-1) \\
B x=d \quad(\text { index } m) \\
\text { with } x \in \mathbb{N}_{0}^{n}, A \in \mathbb{N}^{m \times n}, c \in \mathbb{N}^{m}, B \in \mathbb{N}_{+}^{1 \times n}, d \in \mathbb{N}_{+} .
\end{gathered}
$$

- Output: solution of the system or 'search failed'
- Remark: algorithm can easily be generalized to other problems.

Choice of the variable to be increased next:

Choice of the variable to be increased next:

- For each variable v do the following:

Choice of the variable to be increased next:

- For each variable v do the following:
- compute left hand sides after increase of v and store it in initialLHS[0..m]

Choice of the variable to be increased next:

- For each variable v do the following:
- compute left hand sides after increase of v and store it in initialLHS[0..m]
- set counter $[0]=\operatorname{counter}[1]=\ldots=\operatorname{counter}[m-1]=0$

Choice of the variable to be increased next:

- For each variable v do the following:
- compute left hand sides after increase of v and store it in initialLHS[0..m]
- set counter $[0]=\operatorname{counter}[1]=\ldots=\operatorname{counter}[m-1]=0$
- do n_{s} sample runs (n_{s} being a number fixed by the user)

Choice of the variable to be increased next:

- For each variable v do the following:
- compute left hand sides after increase of v and store it in initialLHS[0..m]
- set counter $[0]=\operatorname{counter}[1]=\ldots=\operatorname{counter}[m-1]=0$
- do n_{s} sample runs (n_{s} being a number fixed by the user)
- set eval $(v):=\prod_{j=0}^{m-1} \frac{\text { counter }[j]}{n_{s}}$

Choice of the variable to be increased next:

- For each variable v do the following:
- compute left hand sides after increase of v and store it in initialLHS[0..m]
- set counter $[0]=\operatorname{counter}[1]=\ldots=\operatorname{counter}[m-1]=0$
- do n_{s} sample runs (n_{s} being a number fixed by the user)
- set eval $(v):=\prod_{j=0}^{m-1} \frac{\text { counter }[\mathrm{j}]}{n_{s}}$
- choose v^{*} so that eval $\left(v^{*}\right)$ is maximal

Pseudocode for a single sample run:

```
for (int i=0; i<=m; i++){ //restore initial LHS
    LHS[i]=initialLHS[i];
}
while(LHS[m]<RHS[m]){ //increase vars randomly
    randomly choose a variable w;
    increase w by 1;
    update LHS[0],LHS[1],...,LHS[m-1],LHS[m];
}
if (LHS[m]==RHS[m]){ //update counters
    for (i=0; i<m; i++){
        if (LHS[i]<=RHS[i]){
                counter[i]++;
        }
    }
```

\}

With the method presented we could construct the following new linear binary codes:

$$
k=11:
$$

$$
k=12:
$$

$$
k=13:
$$

n	d
41	$\mathbf{1 6}$
73	$\mathbf{3 2}$
81	34
136	62
139	$\mathbf{6 4}$
146	66
149	68
155	$\mathbf{7 2}$

n	d
74	$\mathbf{3 2}$
83	34
99	42
102	44
107	46
110	48
140	$\mathbf{6 4}$

n	d
41	$\mathbf{1 4}$
155	68
158	70
161	72

(entries in boldface belong to optimal codes)

Thanks for your attention!

