Heuristic Construction of Linear Codes with prescribed Automorphism Group

Johannes Zwanzger

University of Bayreuth

Soria Summer School July 2008

- 2 Diophantine inequations in coding theory
- Operation of automorphisms
- 4 A heuristic solution algorithm

A linear code C over 𝔽_q of blocklength n and dimension k is a k-dimensional subspace of 𝔽ⁿ_q

- A linear code C over 𝔽_q of blocklength n and dimension k is a k-dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*

- A linear code C over 𝔽_q of blocklength n and dimension k is a k−dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*
- weight wt(c) of $c \in C$: number of nonzero components in c

- A linear code C over 𝔽_q of blocklength n and dimension k is a k−dimensional subspace of 𝔽ⁿ_q
- elements of *C* are called *codewords* and written as *row vectors*
- weight wt(c) of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c' \in C$: dist(c, c') := wt(c - c')

- A linear code C over 𝔽_q of blocklength n and dimension k is a k−dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*
- weight wt(c) of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c' \in C$: dist(c, c') := wt(c - c')
- The *minimum distance* of *C* is the minimum Hamming distance between any two *different* codewords of *C*.

- A linear code C over 𝔽_q of blocklength n and dimension k is a k−dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*
- weight wt(c) of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c' \in C$: dist(c, c') := wt(c - c')
- The *minimum distance* of *C* is the minimum Hamming distance between any two *different* codewords of *C*.
- C has minimum distance $d \Rightarrow up$ to $\lfloor \frac{d-1}{2} \rfloor$ errors can be corrected

Lemma

Existence of a linear k-dimensional code over \mathbb{F}_q with blocklength n and minimum distance d

\uparrow

Existence of a (multi-)set P of n points in PG(k-1,q) so that for every hyperplane H holds: $|H \cap P| \le n-d$.

Corollary

The search of linear (n, k, d, q)-codes is equivalent to looking for solutions of the following diophantine (in-)equation system:

$$M_q^k \times \leq \begin{pmatrix} n-d \\ n-d \\ \vdots \\ n-d \end{pmatrix}$$
$$\mathbb{1}^T \times = n$$

where $x \in \mathbb{N}_0^m$ and M_q^k is the $m \times m$ incidence matrix between points (columns) and hyperplanes (rows) in PG(k-1,q).

Corollary

The search of linear (n, k, d, q)-codes is equivalent to looking for solutions of the following diophantine (in-)equation system:

$$M_q^k \times \leq \begin{pmatrix} n-d \\ n-d \\ \vdots \\ n-d \end{pmatrix}$$
$$\mathbb{1}^T \times = n$$

where $x \in \mathbb{N}_0^m$ and M_q^k is the $m \times m$ incidence matrix between points (columns) and hyperplanes (rows) in PG(k-1,q).

Problem: m gets huge very fast!

A possible approach:

• Prescribe a subgroup A of PGL(k, q) which must be contained in the automorphism group of the point (multi-)set P

- Prescribe a subgroup A of PGL(k, q) which must be contained in the automorphism group of the point (multi-)set P
- $a \in PGL(k,q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$

- Prescribe a subgroup A of PGL(k, q) which must be contained in the automorphism group of the point (multi-)set P
- $a \in PGL(k,q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of PG(k-1, q), we now select complete orbits under the action of A on the points

- Prescribe a subgroup A of PGL(k, q) which must be contained in the automorphism group of the point (multi-)set P
- $a \in PGL(k,q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of PG(k − 1, q), we now select complete orbits under the action of A on the points ⇒ number of variables is reduced to the number of orbits

- Prescribe a subgroup A of PGL(k, q) which must be contained in the automorphism group of the point (multi-)set P
- $a \in PGL(k,q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of PG(k − 1, q), we now select complete orbits under the action of A on the points ⇒ number of variables is reduced to the number of orbits
- Let p be a point of PG(k − 1, q), H be a hyperplane and a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

- Prescribe a subgroup A of PGL(k, q) which must be contained in the automorphism group of the point (multi-)set P
- $a \in PGL(k,q)$ is automorphism of P iff $[p \in P \Leftrightarrow a(p) \in P]$
- Instead of choosing single points of PG(k − 1, q), we now select complete orbits under the action of A on the points ⇒ number of variables is reduced to the number of orbits
- Let p be a point of PG(k − 1, q), H be a hyperplane and a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).
 ⇒ number of equations is reduced to the number of orbits of A on the hyperplanes.

	0	0	0	0	1	1	1	1	1	1	1	1	1
	0	1	1	1	0	0	0	1	1	1	2	2	2
	1	0	1	2	0	1	2	0	1	2	0	1	2
$(0\ 0\ 1)^{\perp}$	0	1	0	0	1	0	0	1	0	0	1	0	0
$(0\ 1\ 0)^{\perp}$	1	0	0	0	1	1	1	0	0	0	0	0	0
$(0\ 1\ 1)^{\perp}$	0	0	0	1	1	0	0	0	0	1	0	1	0
(0 1 2)⊥	0	0	1	0	1	0	0	0	1	0	0	0	1
$(1\ 0\ 0)^{\perp}$	1	1	1	1	0	0	0	0	0	0	0	0	0
$(1 \ 0 \ 1)^{\perp}$	0	1	0	0	0	0	1	0	0	1	0	0	1
$(1 \ 0 \ 2)^{\perp}$	0	1	0	0	0	1	0	0	1	0	0	1	0
$(1\ 1\ 0)^{\perp}$	1	0	0	0	0	0	0	0	0	0	1	1	1
$(1\ 1\ 1)^{\perp}$	0	0	0	1	0	0	1	0	1	0	1	0	0
$(1\ 1\ 2)^{\perp}$	0	0	1	0	0	1	0	0	0	1	1	0	0
$(1\ 2\ 0)^{\perp}$	1	0	0	0	0	0	0	1	1	1	0	0	0
$(1\ 2\ 1)^{\perp}$	0	0	1	0	0	0	1	1	0	0	0	1	0
$(1\ 2\ 2)^{\perp}$	0	0	0	1	0	1	0	1	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	1

(010)	0	0	0	0	1	1	1	1	1	1	1	1	1
$A = \langle \left(\begin{array}{c} 0 & 2 \\ 1 \\ \end{array} \right) \rangle$	0	1	1	1	0	0	0	1	1	1	2	2	2
	1	0	1	2	0	1	2	0	1	2	0	1	2
$(0\ 0\ 1)^{\perp}$	0	1	0	0	1	0	0	1	0	0	1	0	0
$(0\ 1\ 0)^{\perp}$	1	0	0	0	1	1	1	0	0	0	0	0	0
$(0\ 1\ 1)^{\perp}$	0	0	0	1	1	0	0	0	0	1	0	1	0
(0 1 2)⊥	0	0	1	0	1	0	0	0	1	0	0	0	1
$(1\ 0\ 0)^{\perp}$	1	1	1	1	0	0	0	0	0	0	0	0	0
$(1 \ 0 \ 1)^{\perp}$	0	1	0	0	0	0	1	0	0	1	0	0	1
$(1 \ 0 \ 2)^{\perp}$	0	1	0	0	0	1	0	0	1	0	0	1	0
$(1\ 1\ 0)^{\perp}$	1	0	0	0	0	0	0	0	0	0	1	1	1
$(1\ 1\ 1)^{\perp}$	0	0	0	1	0	0	1	0	1	0	1	0	0
$(1 \ 1 \ 2)^{\perp}$	0	0	1	0	0	1	0	0	0	1	1	0	0
$(1\ 2\ 0)^{\perp}$	1	0	0	0	0	0	0	1	1	1	0	0	0
$(1\ 2\ 1)^{\perp}$	0	0	1	0	0	0	1	1	0	0	0	1	0
$(1 2 2)^{\perp}$	0	0	0	1	0	1	0	1	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	1

Example (q=3, $\overline{k=3}$)

(010)	0	0	0	0	1	1	1	1	1	1	1	1	1
$A = \langle \left(\begin{array}{c} 0 & 2 \\ 1 \\ \end{array} \right) \rangle$	0	1	1	1	0	0	0	1	1	1	2	2	2
	1	0	1	2	0	1	2	0	1	2	0	1	2
$(0\ 0\ 1)^{\perp}$	0	1	0	0	1	0	0	1	0	0	1	0	0
$(0\ 1\ 0)^{\perp}$	1	0	0	0	1	1	1	0	0	0	0	0	0
$(0\ 1\ 1)^{\perp}$	0	0	0	1	1	0	0	0	0	1	0	1	0
(0 1 2)⊥	0	0	1	0	1	0	0	0	1	0	0	0	1
$(1\ 0\ 0)^{\perp}$	1	1	1	1	0	0	0	0	0	0	0	0	0
$(1 \ 0 \ 1)^{\perp}$	0	1	0	0	0	0	1	0	0	1	0	0	1
$(1 \ 0 \ 2)^{\perp}$	0	1	0	0	0	1	0	0	1	0	0	1	0
$(1\ 1\ 0)^{\perp}$	1	0	0	0	0	0	0	0	0	0	1	1	1
$(1\ 1\ 1)^{\perp}$	0	0	0	1	0	0	1	0	1	0	1	0	0
$(1\ 1\ 2)^{\perp}$	0	0	1	0	0	1	0	0	0	1	1	0	0
$(1\ 2\ 0)^{\perp}$	1	0	0	0	0	0	0	1	1	1	0	0	0
$(1\ 2\ 1)^{\perp}$	0	0	1	0	0	0	1	1	0	0	0	1	0
$(1\ 2\ 2)^{\perp}$	0	0	0	1	0	1	0	1	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	1

	0 0 1	0 1 1	0 1 1	1 1 1	1
	0 1 0	1 0 2	$1 \ 0 \ 1$	1 2 2	1
	1 1 0	0 2 2	2 1 1	$0 \ 0 \ 1$	2
$(0\ 0\ 1)^{\perp}$	1	1	0	2	0
$(0\ 1\ 0)^{\perp}$	2	1	1	0	0
$(0\ 1\ 1)^{\perp}$	1	0	1	1	1
$(0\ 1\ 2)^{\perp}$	2	1	1	0	0
$(1\ 0\ 0)^{\perp}$	2	1	1	0	0
$(1\ 0\ 1)^{\perp}$	0	3	0	0	1
$(1\ 0\ 2)^{\perp}$	0	1	2	1	0
$(1\ 1\ 0)^\perp$	1	1	0	2	0
$(1\ 1\ 1)^\perp$	0	1	2	1	0
$(1\ 1\ 2)^{\perp}$	1	0	1	1	1
$(1\ 2\ 0)^{\perp}$	1	0	1	1	1
$(1\ 2\ 1)^{\perp}$	1	1	0	2	0
$(1\ 2\ 2)^{\perp}$	0	1	2	1	0
	3	3	3	3	1

	0 0 1	0 1 1	0 1 1	1 1 1	1
	010	1 0 2	$1 \ 0 \ 1$	122	1
	1 1 0	022	2 1 1	0 0 1	2
$(0\ 0\ 1)^{\perp}$	1	1	0	2	0
$(0\ 1\ 0)^{\perp}$	2	1	1	0	0
$(0\ 1\ 1)^{\perp}$	1	0	1	1	1
$(0\ 1\ 2)^{\perp}$	2	1	1	0	0
$(1\ 0\ 0)^\perp$	2	1	1	0	0
$(1\ 0\ 1)^\perp$	0	3	0	0	1
$(1\ 0\ 2)^{\perp}$	0	1	2	1	0
$(1\ 1\ 0)^\perp$	1	1	0	2	0
$(1\ 1\ 1)^\perp$	0	1	2	1	0
$(1\ 1\ 2)^{\perp}$	1	0	1	1	1
$(1\ 2\ 0)^\perp$	1	0	1	1	1
$(1\ 2\ 1)^{\perp}$	1	1	0	2	0
$(1\ 2\ 2)^{\perp}$	0	1	2	1	0
	3	3	3	3	1

(021)	0 0 1	0 1 1	0 1 1	1 1 1	1
$(A^{-1}) = \langle (100) \rangle$	010	1 0 2	1 0 1	122	1
	1 1 0	022	2 1 1	0 0 1	2
$(0\ 0\ 1)^{\perp}$	1	1	0	2	0
$(0\ 1\ 0)^{\perp}$	2	1	1	0	0
$(0\ 1\ 1)^{\perp}$	1	0	1	1	1
$(0\ 1\ 2)^{\perp}$	2	1	1	0	0
$(1\ 0\ 0)^{\perp}$	2	1	1	0	0
$(1 \ 0 \ 1)^{\perp}$	0	3	0	0	1
$(1 \ 0 \ 2)^{\perp}$	0	1	2	1	0
$(1\ 1\ 0)^{\perp}$	1	1	0	2	0
$(1\ 1\ 1)^{\perp}$	0	1	2	1	0
$(1\ 1\ 2)^{\perp}$	1	0	1	1	1
$(1\ 2\ 0)^{\perp}$	1	0	1	1	1
$(1\ 2\ 1)^{\perp}$	1	1	0	2	0
$(1\ 2\ 2)^{\perp}$	0	1	2	1	0
	3	3	3	3	1

(021)	0 0 1	0 1 1	0 1 1	1 1 1	1
$(A^{-1}) = \langle (100) \rangle$	010	1 0 2	$1 \ 0 \ 1$	122	1
	1 1 0	022	2 1 1	$0 \ 0 \ 1$	2
$(0\ 0\ 1)^{\perp}$	1	1	0	2	0
$(0\ 1\ 0)^{\perp}$	2	1	1	0	0
$(0\ 1\ 1)^{\perp}$	1	0	1	1	1
$(0\ 1\ 2)^{\perp}$	2	1	1	0	0
$(1\ 0\ 0)^{\perp}$	2	1	1	0	0
$(1 \ 0 \ 1)^{\perp}$	0	3	0	0	1
$(1\ 0\ 2)^{\perp}$	0	1	2	1	0
$(1\ 1\ 0)^{\perp}$	1	1	0	2	0
$(1\ 1\ 1)^{\perp}$	0	1	2	1	0
$(1 \ 1 \ 2)^{\perp}$	1	0	1	1	1
$(1\ 2\ 0)^{\perp}$	1	0	1	1	1
$(1\ 2\ 1)^{\perp}$	1	1	0	2	0
$(1\ 2\ 2)^{\perp}$	0	1	2	1	0
	3	3	3	3	1

Example ($\overline{q=3, k=3}$)

The reduced system:

$$\begin{pmatrix} 1 & 1 & 0 & 2 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 \end{pmatrix} \cdot x \leq \begin{pmatrix} n-d \\ n-d \\ n-d \\ n-d \\ n-d \end{pmatrix}$$
$$(3 \ 3 \ 3 \ 3 \ 1 \) \cdot x = n$$

A heuristic solution algorithm:

A heuristic solution algorithm:

• Input: (In-)equation system of type

$$egin{aligned} &Ax &\leq c \ (ext{indices } 0 \dots m-1) \ &Bx &= d \ (ext{index } m) \,, \end{aligned}$$
 with $x \in \mathbb{N}_0^n, \, A \in \mathbb{N}^{m imes n}, \, c \in \mathbb{N}^m, \, B \in \mathbb{N}_+^{1 imes n}, \, d \in \mathbb{N}_+$

A heuristic solution algorithm:

• Input: (In-)equation system of type

$$Ax \leq c$$
 (indices $0 \dots m - 1$)
 $Bx = d$ (index m),

with $x \in \mathbb{N}_0^n$, $A \in \mathbb{N}^{m \times n}$, $c \in \mathbb{N}^m$, $B \in \mathbb{N}_+^{1 \times n}$, $d \in \mathbb{N}_+$.

• Output: solution of the system or 'search failed'

A heuristic solution algorithm:

• Input: (In-)equation system of type

$$Ax \leq c$$
 (indices $0 \dots m-1$)
 $Bx = d$ (index m),

with $x \in \mathbb{N}_0^n$, $A \in \mathbb{N}^{m \times n}$, $c \in \mathbb{N}^m$, $B \in \mathbb{N}_+^{1 \times n}$, $d \in \mathbb{N}_+$.

- Output: solution of the system or 'search failed'
- Remark: algorithm can easily be generalized to other problems.

Choice of the variable to be increased next:

• For each variable v do the following:

- For each variable v do the following:
 - compute left hand sides after increase of v and store it in initialLHS[0..m]

- For each variable v do the following:
 - compute left hand sides after increase of v and store it in initialLHS[0..m]
 - set $counter[0] = counter[1] = \ldots = counter[m-1] = 0$

- For each variable v do the following:
 - compute left hand sides after increase of v and store it in initialLHS[0..m]
 - set $counter[0] = counter[1] = \ldots = counter[m-1] = 0$
 - do n_s sample runs (n_s being a number fixed by the user)

- For each variable v do the following:
 - compute left hand sides after increase of v and store it in initialLHS[0..m]
 - set $counter[0] = counter[1] = \ldots = counter[m-1] = 0$
 - do n_s sample runs (n_s being a number fixed by the user)

• set
$$eval(v) := \prod_{j=0}^{m-1} rac{\operatorname{counter}[j]}{n_s}$$

- For each variable v do the following:
 - compute left hand sides after increase of v and store it in initialLHS[0..m]
 - set $counter[0] = counter[1] = \ldots = counter[m-1] = 0$
 - do n_s sample runs (n_s being a number fixed by the user)

• set
$$eval(v) := \prod_{j=0}^{m-1} rac{\operatorname{counter}[j]}{n_s}$$

• choose v^* so that $eval(v^*)$ is maximal

Pseudocode for a single sample run:

ł

```
for (int i=0; i<=m; i++){ //restore initial LHS</pre>
    LHS[i]=initialLHS[i];
}
while(LHS[m]<RHS[m]){ //increase vars randomly</pre>
    randomly choose a variable w;
    increase w by 1;
    update LHS[0],LHS[1],...,LHS[m-1],LHS[m];
}
if (LHS[m]==RHS[m]){ //update counters
    for (i=0; i<m; i++){</pre>
         if (LHS[i]<=RHS[i]){</pre>
             counter[i]++;
         }
    }
```

With the method presented we could construct the following new linear binary codes:

k = 11 :		k =	12 :	l	<i>k</i> = 13 :			
п	d	п	d		n	d		
41	16	74	32		41	14		
73	32	83	34	1	155	68		
81	34	99	42	1	158	70		
136	62	102	44	1	161	72		
139	64	107	46					
146	66	110	48					
149	68	140	64					
155	72							

(entries in boldface belong to optimal codes)

Thanks for your attention!