
Heuristic Construction Of
”
Good“ Error-Correcting

Linear Codes

Johannes Zwanzger

University of Bayreuth

Magdeburg
November 17th, 2007

Introduction I

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C : dist(c, c ′) := wt(c − c ′)

Introduction I

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C : dist(c, c ′) := wt(c − c ′)

Introduction I

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C : dist(c, c ′) := wt(c − c ′)

Introduction I

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C : dist(c, c ′) := wt(c − c ′)

Introduction II

The minimum distance of C is the minimum Hamming distance
between any two different codewords of C .

In the linear case the minimum distance equals the minimum weight
over all nonzero codewords in C

C has minimum distance d ⇒ up to bd−1
2 c errors can be corrected

C can be described by a generator matrix Γ ∈ Fk×n
q , whose rows form

a basis of C

Introduction II

The minimum distance of C is the minimum Hamming distance
between any two different codewords of C .

In the linear case the minimum distance equals the minimum weight
over all nonzero codewords in C

C has minimum distance d ⇒ up to bd−1
2 c errors can be corrected

C can be described by a generator matrix Γ ∈ Fk×n
q , whose rows form

a basis of C

Introduction II

The minimum distance of C is the minimum Hamming distance
between any two different codewords of C .

In the linear case the minimum distance equals the minimum weight
over all nonzero codewords in C

C has minimum distance d ⇒ up to bd−1
2 c errors can be corrected

C can be described by a generator matrix Γ ∈ Fk×n
q , whose rows form

a basis of C

Introduction II

The minimum distance of C is the minimum Hamming distance
between any two different codewords of C .

In the linear case the minimum distance equals the minimum weight
over all nonzero codewords in C

C has minimum distance d ⇒ up to bd−1
2 c errors can be corrected

C can be described by a generator matrix Γ ∈ Fk×n
q , whose rows form

a basis of C

Example

Γ =

 1 0 0 1 0 1
0 1 0 1 1 2
0 0 1 1 2 2

generates a code with parameters n = 6, k = 3, d = 3 over F3.

Observations:

codewords arise via multiplication of Fk
q with Γ: C = {vΓ : v ∈ Fk

q}
the j−th component of a codeword c = (c1, c2, . . . , cn) = vΓ only
depends from the j−th column of Γ: cj = vΓ∗j

multiplying a column of Γ with λ ∈ F∗q has no influence on the weights

λ ∈ F∗q, v ∈ Fk
q ⇒ wt(vΓ) = wt(λvΓ)

Example

Γ =

 1 0 0 1 0 1
0 1 0 1 1 2
0 0 1 1 2 2

generates a code with parameters n = 6, k = 3, d = 3 over F3.

Observations:

codewords arise via multiplication of Fk
q with Γ: C = {vΓ : v ∈ Fk

q}

the j−th component of a codeword c = (c1, c2, . . . , cn) = vΓ only
depends from the j−th column of Γ: cj = vΓ∗j

multiplying a column of Γ with λ ∈ F∗q has no influence on the weights

λ ∈ F∗q, v ∈ Fk
q ⇒ wt(vΓ) = wt(λvΓ)

Example

Γ =

 1 0 0 1 0 1
0 1 0 1 1 2
0 0 1 1 2 2

generates a code with parameters n = 6, k = 3, d = 3 over F3.

Observations:

codewords arise via multiplication of Fk
q with Γ: C = {vΓ : v ∈ Fk

q}
the j−th component of a codeword c = (c1, c2, . . . , cn) = vΓ only
depends from the j−th column of Γ: cj = vΓ∗j

multiplying a column of Γ with λ ∈ F∗q has no influence on the weights

λ ∈ F∗q, v ∈ Fk
q ⇒ wt(vΓ) = wt(λvΓ)

Example

Γ =

 1 0 0 1 0 1
0 1 0 1 1 2
0 0 1 1 2 2

generates a code with parameters n = 6, k = 3, d = 3 over F3.

Observations:

codewords arise via multiplication of Fk
q with Γ: C = {vΓ : v ∈ Fk

q}
the j−th component of a codeword c = (c1, c2, . . . , cn) = vΓ only
depends from the j−th column of Γ: cj = vΓ∗j

multiplying a column of Γ with λ ∈ F∗q has no influence on the weights

λ ∈ F∗q, v ∈ Fk
q ⇒ wt(vΓ) = wt(λvΓ)

Example

Γ =

 1 0 0 1 0 1
0 1 0 1 1 2
0 0 1 1 2 2

generates a code with parameters n = 6, k = 3, d = 3 over F3.

Observations:

codewords arise via multiplication of Fk
q with Γ: C = {vΓ : v ∈ Fk

q}
the j−th component of a codeword c = (c1, c2, . . . , cn) = vΓ only
depends from the j−th column of Γ: cj = vΓ∗j

multiplying a column of Γ with λ ∈ F∗q has no influence on the weights

λ ∈ F∗q, v ∈ Fk
q ⇒ wt(vΓ) = wt(λvΓ)

Theorem

Let t := qk−1
q−1 and Ωk,q =

(
ω〈v〉,〈u〉

)
∈ Nt×t be the matrix (well-)defined by

ω〈v〉,〈u〉 :=

{
0 if 〈v , u〉Fq = 0
1 else

for 〈v〉, 〈u〉 ∈ PPG (k − 1, q) with v , u ∈ Fk
q
∗
. Then:

Existence of a nonredundant linear (n, k, d , q)−code
m

Existence of a multiset {〈u1〉, 〈u2〉, . . . , 〈un〉} ⊂ PPG (k − 1, q) so that

n∑
i=1

ω〈v〉,〈ui 〉 ≥ d

is true for each 〈v〉 ∈ PPG (k − 1, q).

Example

0
0
1

0
1
0

0
1
1

0
1
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

∑
0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 4
0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 4
0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 4
0 1 2 1 1 0 1 0 1 1 1 0 1 1 1 0 3
1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 3
1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 4
1 0 2 1 0 1 1 1 0 1 1 0 1 1 0 1 4
1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 4
1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 4
1 1 2 1 1 0 1 1 0 1 1 1 0 0 1 1 6
1 2 0 0 1 1 1 1 1 1 0 0 0 1 1 1 4
1 2 1 1 1 0 1 1 1 0 0 1 1 1 0 1 6
1 2 2 1 1 1 0 1 0 1 0 1 1 1 1 0 4

Heuristic Algorithm

Input:

code parameters n, k, d , q

initial column multiset X0

evaluation function eval : P(PPG (k − 1, q))→ R
Output: column multiset X for a (n, k , d , q)−code or FAILED

(1) Set X ← X0.
(2) For each x ∈ PPG (k − 1, q), compute eval(X ∪ {x}).
(3) Choose a point x∗ maximizing the value in (2). Set X ← X ∪ {x∗}.
(4) If |X | < n, go to (2).
(5) If dX ≥ d , return X ; otherwise, return FAILED.

Heuristic Algorithm

Input:

code parameters n, k, d , q

initial column multiset X0

evaluation function eval : P(PPG (k − 1, q))→ R
Output: column multiset X for a (n, k , d , q)−code or FAILED

(1) Set X ← X0.
(2) For each x ∈ PPG (k − 1, q), compute eval(X ∪ {x}).
(3) Choose a point x∗ maximizing the value in (2). Set X ← X ∪ {x∗}.
(4) If |X | < n, go to (2).
(5) If dX ≥ d , return X ; otherwise, return FAILED.

Heuristic Algorithm

Input:

code parameters n, k, d , q

initial column multiset X0

evaluation function eval : P(PPG (k − 1, q))→ R
Output: column multiset X for a (n, k , d , q)−code or FAILED

(1) Set X ← X0.
(2) For each x ∈ PPG (k − 1, q), compute eval(X ∪ {x}).
(3) Choose a point x∗ maximizing the value in (2). Set X ← X ∪ {x∗}.
(4) If |X | < n, go to (2).
(5) If dX ≥ d , return X ; otherwise, return FAILED.

Heuristic Algorithm

Input:

code parameters n, k, d , q

initial column multiset X0

evaluation function eval : P(PPG (k − 1, q))→ R

Output: column multiset X for a (n, k , d , q)−code or FAILED

(1) Set X ← X0.
(2) For each x ∈ PPG (k − 1, q), compute eval(X ∪ {x}).
(3) Choose a point x∗ maximizing the value in (2). Set X ← X ∪ {x∗}.
(4) If |X | < n, go to (2).
(5) If dX ≥ d , return X ; otherwise, return FAILED.

Heuristic Algorithm

Input:

code parameters n, k, d , q

initial column multiset X0

evaluation function eval : P(PPG (k − 1, q))→ R
Output: column multiset X for a (n, k , d , q)−code or FAILED

(1) Set X ← X0.
(2) For each x ∈ PPG (k − 1, q), compute eval(X ∪ {x}).
(3) Choose a point x∗ maximizing the value in (2). Set X ← X ∪ {x∗}.
(4) If |X | < n, go to (2).
(5) If dX ≥ d , return X ; otherwise, return FAILED.

Heuristic Algorithm

Input:

code parameters n, k, d , q

initial column multiset X0

evaluation function eval : P(PPG (k − 1, q))→ R
Output: column multiset X for a (n, k , d , q)−code or FAILED

(1) Set X ← X0.
(2) For each x ∈ PPG (k − 1, q), compute eval(X ∪ {x}).
(3) Choose a point x∗ maximizing the value in (2). Set X ← X ∪ {x∗}.
(4) If |X | < n, go to (2).
(5) If dX ≥ d , return X ; otherwise, return FAILED.

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:
〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:
〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:
〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:

〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:
〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:
〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function I

Observation:

For each row of Ωk,q there are exactly qk−1 columns with a ’1’

 p := qk−1

t = (q−1)(qk−1)
qk−1

Consequences:
〈v〉 := arbitrary row index of Ωk,q

X ′ := random multiset of m column indizes := {〈u1〉, 〈u2〉, . . . , 〈um〉}
j ≤ m ∈ N

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 = j

)
= pj(1− p)m−j

(m
j

)
=: rm, j

Prob

(
m∑

l=1

ω〈v〉,〈ul 〉 ≥ j

)
=

m∑
l=j

rm, l =: sm, j

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Evaluation Function II

Let n, k , d , q be fixed.
Consider X ⊂ PPG (k − 1, q) with |X | := n′ < n.

Goal: Find a ’sensible’ evaluation for X

Approach:
Ri := set of rows of Ωk,q where sum ’over X’ equals i
ai := |Ri |
Y := random multisubset of PPG (k − 1, q) with |Y | = n − n′

X ∪ Y multiset for (n, k , d , q)−code ⇔
∀i ≤ d − 1: for each row in Ri the row sum ’over Y’ is ≥ d − i

Probability for a single row is sn−n′,d−i

Assumption of stochastic indipendence ...

Definition

eval(X) :=
d−1∏
i=1

sai
n−n′,d−i

Example

Γ1 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the
evaluation of Γ1?

weight-polynomial is WC1(x) = x0 + 15x2 + 15x4 + x6

here: p = 16
31 ⇒ s4,2 = 656896

923521 ⇒ eval(Γ1) =
(

656896
923521

)15 ≈ 6.04 · 10−3

Definition

eval(X) :=
d−1∏
i=1

sai
n−n′,d−i

Example

Γ1 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the
evaluation of Γ1?

weight-polynomial is WC1(x) = x0 + 15x2 + 15x4 + x6

here: p = 16
31 ⇒ s4,2 = 656896

923521 ⇒ eval(Γ1) =
(

656896
923521

)15 ≈ 6.04 · 10−3

Definition

eval(X) :=
d−1∏
i=1

sai
n−n′,d−i

Example

Γ1 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the
evaluation of Γ1?

weight-polynomial is WC1(x) = x0 + 15x2 + 15x4 + x6

here: p = 16
31 ⇒ s4,2 = 656896

923521 ⇒ eval(Γ1) =
(

656896
923521

)15 ≈ 6.04 · 10−3

Definition

eval(X) :=
d−1∏
i=1

sai
n−n′,d−i

Example

Γ1 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the
evaluation of Γ1?

weight-polynomial is WC1(x) = x0 + 15x2 + 15x4 + x6

here: p = 16
31 ⇒ s4,2 = 656896

923521 ⇒ eval(Γ1) =
(

656896
923521

)15 ≈ 6.04 · 10−3

Example

Γ2 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

And what is eval(Γ2)?

weight-polynomial is WC2(x) = x0 + 1x1 + 10x2 + 10x3 + 5x4 + 5x5

eval(Γ2) = s1
4,3 · s10

4,2 · s10
4,1 ≈ 6.36 · 10−3

⇒ although mindist(C1) > mindist(C2), Γ2 is preferred over Γ1

Example

Γ2 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

And what is eval(Γ2)?

weight-polynomial is WC2(x) = x0 + 1x1 + 10x2 + 10x3 + 5x4 + 5x5

eval(Γ2) = s1
4,3 · s10

4,2 · s10
4,1 ≈ 6.36 · 10−3

⇒ although mindist(C1) > mindist(C2), Γ2 is preferred over Γ1

Example

Γ2 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

And what is eval(Γ2)?

weight-polynomial is WC2(x) = x0 + 1x1 + 10x2 + 10x3 + 5x4 + 5x5

eval(Γ2) = s1
4,3 · s10

4,2 · s10
4,1 ≈ 6.36 · 10−3

⇒ although mindist(C1) > mindist(C2), Γ2 is preferred over Γ1

Example

Γ2 :=

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

And what is eval(Γ2)?

weight-polynomial is WC2(x) = x0 + 1x1 + 10x2 + 10x3 + 5x4 + 5x5

eval(Γ2) = s1
4,3 · s10

4,2 · s10
4,1 ≈ 6.36 · 10−3

⇒ although mindist(C1) > mindist(C2), Γ2 is preferred over Γ1

Results

q = 2, k = 10: q = 5, k = 6: q = 5, k = 7:

n 181 186

d 86 88
n 47

d 32

n 19 33 37 44 52

d 10 20 23 28 34

q = 7, k = 4: q = 7, k = 5: q = 7, k = 6:

n 77

d 63

n 56 62 68

d 43 48 53

n 62 67 73 77

d 46 50 55 58

q = 9, k = 5

n 33

d 25

	Introduction
	Heuristic method

