Heuristic Construction Of „Good" Error-Correcting Linear Codes

Johannes Zwanzger
University of Bayreuth

Magdeburg
November 17th, 2007

Introduction I

- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}

Introduction I

- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors

Introduction I

- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- weight $w t(c)$ of $c \in C$: number of nonzero components in c

Introduction I

- A linear code C over \mathbb{F}_{q} of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_{q}^{n}
- elements of C are called codewords and written as row vectors
- weight $w t(c)$ of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c^{\prime} \in C: \operatorname{dist}\left(c, c^{\prime}\right):=w t\left(c-c^{\prime}\right)$

Introduction II

- The minimum distance of C is the minimum Hamming distance between any two different codewords of C.

Introduction II

- The minimum distance of C is the minimum Hamming distance between any two different codewords of C.
- In the linear case the minimum distance equals the minimum weight over all nonzero codewords in C

Introduction II

- The minimum distance of C is the minimum Hamming distance between any two different codewords of C.
- In the linear case the minimum distance equals the minimum weight over all nonzero codewords in C
- C has minimum distance $d \Rightarrow$ up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors can be corrected

Introduction II

- The minimum distance of C is the minimum Hamming distance between any two different codewords of C.
- In the linear case the minimum distance equals the minimum weight over all nonzero codewords in C
- C has minimum distance $d \Rightarrow$ up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors can be corrected
- C can be described by a generator matrix $\Gamma \in \mathbb{F}_{q}^{k \times n}$, whose rows form a basis of C

Example
$\Gamma=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 & 2\end{array}\right)$
generates a code with parameters $n=6, k=3, d=3$ over \mathbb{F}_{3}.

Observations:

Example

$\Gamma=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 & 2\end{array}\right)$
generates a code with parameters $n=6, k=3, d=3$ over \mathbb{F}_{3}.

Observations:

- codewords arise via multiplication of \mathbb{F}_{q}^{k} with $\Gamma: C=\left\{v \Gamma: v \in \mathbb{F}_{q}^{k}\right\}$

Example

$\Gamma=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 & 2\end{array}\right)$
generates a code with parameters $n=6, k=3, d=3$ over \mathbb{F}_{3}.

Observations:

- codewords arise via multiplication of \mathbb{F}_{q}^{k} with $\Gamma: C=\left\{v \Gamma: v \in \mathbb{F}_{q}^{k}\right\}$
- the j-th component of a codeword $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)=v \Gamma$ only depends from the j-th column of $\Gamma: c_{j}=v \Gamma_{* j}$

Example

$\Gamma=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 & 2\end{array}\right)$
generates a code with parameters $n=6, k=3, d=3$ over \mathbb{F}_{3}.

Observations:

- codewords arise via multiplication of \mathbb{F}_{q}^{k} with $\Gamma: C=\left\{v \Gamma: v \in \mathbb{F}_{q}^{k}\right\}$
- the j-th component of a codeword $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)=v \Gamma$ only depends from the j-th column of $\Gamma: c_{j}=v \Gamma_{* j}$
- multiplying a column of Γ with $\lambda \in \mathbb{F}_{q}^{*}$ has no influence on the weights

Example

$\Gamma=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 & 2\end{array}\right)$
generates a code with parameters $n=6, k=3, d=3$ over \mathbb{F}_{3}.

Observations:

- codewords arise via multiplication of \mathbb{F}_{q}^{k} with $\Gamma: C=\left\{v \Gamma: v \in \mathbb{F}_{q}^{k}\right\}$
- the j-th component of a codeword $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)=v \Gamma$ only depends from the j-th column of $\Gamma: c_{j}=v \Gamma_{* j}$
- multiplying a column of Γ with $\lambda \in \mathbb{F}_{q}^{*}$ has no influence on the weights
- $\lambda \in \mathbb{F}_{q}^{*}, v \in \mathbb{F}_{q}^{k} \Rightarrow w t(v \Gamma)=w t(\lambda v \Gamma)$

Theorem

Let $t:=\frac{q^{k}-1}{q-1}$ and $\Omega_{k, q}=\left(\omega_{\langle v\rangle,\langle u\rangle}\right) \in \mathbb{N}^{t \times t}$ be the matrix (well-)defined by

$$
\omega_{\langle v\rangle,\langle u\rangle}:= \begin{cases}0 & \text { if }\langle v,\rangle_{\mathbb{F}_{q}}=0 \\ 1 & \text { else }\end{cases}
$$

for $\langle v\rangle,\langle u\rangle \in \operatorname{PPG}(k-1, q)$ with $v, u \in \mathbb{F}_{q}^{k^{*}}$. Then:
Existence of a nonredundant linear (n, k, d, q)-code ॥
Existence of a multiset $\left\{\left\langle u_{1}\right\rangle,\left\langle u_{2}\right\rangle, \ldots,\left\langle u_{n}\right\rangle\right\} \subset \operatorname{PPG}(k-1, q)$ so that

$$
\sum_{i=1}^{n} \omega_{\langle v\rangle,\left\langle u_{i}\right\rangle} \geq d
$$

is true for each $\langle v\rangle \in \operatorname{PPG}(k-1, q)$.

Example

			$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1	1	$\mathbf{1}$
			$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf{0}$	0	0	1	$\mathbf{1}$	1	2	2	$\mathbf{2}$
		$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{2}$	$\mathbf{0}$	1	2	0	$\mathbf{1}$	2	0	1	$\mathbf{2}$	
0	0	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{0}$	1	1	0	$\mathbf{1}$	1	0	1	$\mathbf{1}$
0	1	0	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf{0}$	0	0	1	$\mathbf{1}$	1	1	1	$\mathbf{1}$
0	1	1	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{0}$	1	1	1	$\mathbf{1}$	0	1	0	$\mathbf{1}$
0	1	2	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{0}$	1	1	1	$\mathbf{0}$	1	1	1	$\mathbf{0}$
1	0	0	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1	1	$\mathbf{1}$
1	0	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{1}$	1	0	1	$\mathbf{1}$	0	1	1	$\mathbf{0}$
1	0	2	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{1}$	0	1	1	$\mathbf{0}$	1	1	0	$\mathbf{1}$
1	1	0	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	0	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{1}$	1	0	1	$\mathbf{0}$	1	0	1	$\mathbf{1}$
1	1	2	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	0	1	1	$\mathbf{1}$	0	0	1	$\mathbf{1}$
1	2	0	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf{1}$	1	1	0	$\mathbf{0}$	0	1	1	$\mathbf{1}$
1	2	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	$\mathbf{1}$	1	0	0	$\mathbf{1}$	1	1	0	$\mathbf{1}$
1	2	2	$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{1}$	0	1	0	$\mathbf{1}$	1	1	1	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{4}$														

Heuristic Algorithm

Input:

Heuristic Algorithm

Input:

- code parameters n, k, d, q

Heuristic Algorithm

Input:

- code parameters n, k, d, q
- initial column multiset X_{0}

Heuristic Algorithm

Input:

- code parameters n, k, d, q
- initial column multiset X_{0}
- evaluation function eval : $\mathcal{P}(P P G(k-1, q)) \rightarrow \mathbb{R}$

Heuristic Algorithm

Input:

- code parameters n, k, d, q
- initial column multiset X_{0}
- evaluation function eval : $\mathcal{P}(P P G(k-1, q)) \rightarrow \mathbb{R}$

Output: column multiset X for a (n, k, d, q)-code or FAILED

Heuristic Algorithm

Input:

- code parameters n, k, d, q
- initial column multiset X_{0}
- evaluation function eval : $\mathcal{P}(P P G(k-1, q)) \rightarrow \mathbb{R}$

Output: column multiset X for a (n, k, d, q)-code or FAILED
(1) Set $X \leftarrow X_{0}$.
(2) For each $x \in P P G(k-1, q)$, compute eval $(X \cup\{x\})$.
(3) Choose a point x^{*} maximizing the value in (2). Set $X \leftarrow X \cup\left\{x^{*}\right\}$.
(4) If $|X|<n$, go to (2).
(5) If $d_{X} \geq d$, return X; otherwise, return FAILED.

Evaluation Function I

Observation:

Evaluation Function I

Observation:

- For each row of $\Omega_{k, q}$ there are exactly q^{k-1} columns with a ' 1 '

Evaluation Function I

Observation:

- For each row of $\Omega_{k, q}$ there are exactly q^{k-1} columns with a ' 1 '
- $\rightsquigarrow p:=\frac{q^{k-1}}{t}=\frac{(q-1)\left(q^{k-1}\right)}{q^{k}-1}$

Evaluation Function I

Observation:

- For each row of $\Omega_{k, q}$ there are exactly q^{k-1} columns with a ' 1 '
- $\rightsquigarrow p:=\frac{q^{k-1}}{t}=\frac{(q-1)\left(q^{k-1}\right)}{q^{k}-1}$

Consequences:

Evaluation Function I

Observation:

- For each row of $\Omega_{k, q}$ there are exactly q^{k-1} columns with a '1'
- $\rightsquigarrow p:=\frac{q^{k-1}}{t}=\frac{(q-1)\left(q^{k-1}\right)}{q^{k}-1}$

Consequences:

$\langle v\rangle:=$ arbitrary row index of $\Omega_{k, q}$
$X^{\prime}:=$ random multiset of m column indizes $:=\left\{\left\langle u_{1}\right\rangle,\left\langle u_{2}\right\rangle, \ldots,\left\langle u_{m}\right\rangle\right\}$
$j \leq m \in \mathbb{N}$

Evaluation Function I

Observation:

- For each row of $\Omega_{k, q}$ there are exactly q^{k-1} columns with a '1'
- $\rightsquigarrow p:=\frac{q^{k-1}}{t}=\frac{(q-1)\left(q^{k-1}\right)}{q^{k}-1}$

Consequences:

$\langle v\rangle:=$ arbitrary row index of $\Omega_{k, q}$ $X^{\prime}:=$ random multiset of m column indizes $:=\left\{\left\langle u_{1}\right\rangle,\left\langle u_{2}\right\rangle, \ldots,\left\langle u_{m}\right\rangle\right\}$ $j \leq m \in \mathbb{N}$

- $\operatorname{Prob}\left(\sum_{l=1}^{m} \omega_{\langle v\rangle,\left\langle u_{l}\right\rangle}=j\right)=p^{j}(1-p)^{m-j}\binom{m}{j}=: r_{m, j}$

Evaluation Function I

Observation:

- For each row of $\Omega_{k, q}$ there are exactly q^{k-1} columns with a '1'
- $\rightsquigarrow p:=\frac{q^{k-1}}{t}=\frac{(q-1)\left(q^{k-1}\right)}{q^{k}-1}$

Consequences:

$\langle v\rangle:=$ arbitrary row index of $\Omega_{k, q}$
$X^{\prime}:=$ random multiset of m column indizes $:=\left\{\left\langle u_{1}\right\rangle,\left\langle u_{2}\right\rangle, \ldots,\left\langle u_{m}\right\rangle\right\}$ $j \leq m \in \mathbb{N}$

- $\operatorname{Prob}\left(\sum_{l=1}^{m} \omega_{\langle v\rangle,\left\langle u_{l}\right\rangle}=j\right)=p^{j}(1-p)^{m-j}\binom{m}{j}=: r_{m, j}$
$-\operatorname{Prob}\left(\sum_{l=1}^{m} \omega_{\langle v\rangle,\left\langle u_{l}\right\rangle} \geq j\right)=\sum_{l=j}^{m} r_{m, l}=: s_{m, j}$

Evaluation Function II

Evaluation Function II

Let n, k, d, q be fixed.
Consider $X \subset P P G(k-1, q)$ with $|X|:=n^{\prime}<n$.

Evaluation Function II

Let n, k, d, q be fixed.
Consider $X \subset P P G(k-1, q)$ with $|X|:=n^{\prime}<n$.
Goal: Find a 'sensible' evaluation for X

Evaluation Function II

Let n, k, d, q be fixed.
Consider $X \subset P P G(k-1, q)$ with $|X|:=n^{\prime}<n$.
Goal: Find a 'sensible' evaluation for X
Approach:
$R_{i}:=$ set of rows of $\Omega_{k, q}$ where sum 'over X ' equals i
$a_{i}:=\left|R_{i}\right|$
$Y:=$ random multisubset of $P P G(k-1, q)$ with $|Y|=n-n^{\prime}$

Evaluation Function II

Let n, k, d, q be fixed.
Consider $X \subset P P G(k-1, q)$ with $|X|:=n^{\prime}<n$.
Goal: Find a 'sensible' evaluation for X

Approach:

$R_{i}:=$ set of rows of $\Omega_{k, q}$ where sum 'over X^{\prime} equals i
$a_{i}:=\left|R_{i}\right|$
$Y:=$ random multisubset of $P P G(k-1, q)$ with $|Y|=n-n^{\prime}$

- $X \cup Y$ multiset for (n, k, d, q)-code \Leftrightarrow
$\forall i \leq d-1$: for each row in R_{i} the row sum 'over Y^{\prime} is $\geq d-i$

Evaluation Function II

Let n, k, d, q be fixed.
Consider $X \subset P P G(k-1, q)$ with $|X|:=n^{\prime}<n$.
Goal: Find a 'sensible' evaluation for X

Approach:

$R_{i}:=$ set of rows of $\Omega_{k, q}$ where sum 'over X ' equals i
$a_{i}:=\left|R_{i}\right|$
$Y:=$ random multisubset of $P P G(k-1, q)$ with $|Y|=n-n^{\prime}$

- $X \cup Y$ multiset for (n, k, d, q)-code \Leftrightarrow
$\forall i \leq d-1$: for each row in R_{i} the row sum 'over Y^{\prime} is $\geq d-i$
- Probability for a single row is $s_{n-n^{\prime}, d-i}$

Evaluation Function II

Let n, k, d, q be fixed.
Consider $X \subset P P G(k-1, q)$ with $|X|:=n^{\prime}<n$.
Goal: Find a 'sensible' evaluation for X

Approach:

$R_{i}:=$ set of rows of $\Omega_{k, q}$ where sum 'over X ' equals i
$a_{i}:=\left|R_{i}\right|$
$Y:=$ random multisubset of $\operatorname{PPG}(k-1, q)$ with $|Y|=n-n^{\prime}$

- $X \cup Y$ multiset for (n, k, d, q)-code \Leftrightarrow
$\forall i \leq d-1$: for each row in R_{i} the row sum 'over Y^{\prime} is $\geq d-i$
- Probability for a single row is $s_{n-n^{\prime}, d-i}$
- Assumption of stochastic indipendence $\rightsquigarrow \ldots$

Definition

$$
\operatorname{eval}(X):=\prod_{i=1}^{d-1} s_{n-n^{\prime}, d-i}^{a_{i}}
$$

Definition

$$
\operatorname{eval}(X):=\prod_{i=1}^{d-1} s_{n-n^{\prime}, d-i}^{a_{i}}
$$

Example

$$
\Gamma_{1}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Assume we want to construct a linear ($10,5,4,2$)-code. What is the evaluation of Γ_{1} ?

Definition

$$
\operatorname{eval}(X):=\prod_{i=1}^{d-1} s_{n-n^{\prime}, d-i}^{a_{i}}
$$

Example

$$
\Gamma_{1}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Assume we want to construct a linear ($10,5,4,2$)-code. What is the evaluation of Γ_{1} ?

- weight-polynomial is $W_{C_{1}}(x)=x^{0}+15 x^{2}+15 x^{4}+x^{6}$

Definition

$$
\operatorname{eval}(X):=\prod_{i=1}^{d-1} s_{n-n^{\prime}, d-i}^{a_{i}}
$$

Example

$$
\Gamma_{1}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the evaluation of Γ_{1} ?

- weight-polynomial is $W_{C_{1}}(x)=x^{0}+15 x^{2}+15 x^{4}+x^{6}$
- here: $p=\frac{16}{31} \Rightarrow s_{4,2}=\frac{656896}{923521} \Rightarrow \operatorname{eval}\left(\Gamma_{1}\right)=\left(\frac{656896}{923521}\right)^{15} \approx 6.04 \cdot 10^{-3}$

Example

$$
\Gamma_{2}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

And what is eval $\left(\Gamma_{2}\right)$?

Example

$$
\Gamma_{2}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

And what is eval $\left(\Gamma_{2}\right)$?

- weight-polynomial is $W_{C_{2}}(x)=x^{0}+1 x^{1}+10 x^{2}+10 x^{3}+5 x^{4}+5 x^{5}$

Example

$$
\Gamma_{2}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

And what is eval $\left(\Gamma_{2}\right)$?

- weight-polynomial is $W_{C_{2}}(x)=x^{0}+1 x^{1}+10 x^{2}+10 x^{3}+5 x^{4}+5 x^{5}$
- $\operatorname{eval}\left(\Gamma_{2}\right)=s_{4,3}^{1} \cdot s_{4,2}^{10} \cdot s_{4,1}^{10} \approx 6.36 \cdot 10^{-3}$

Example

$$
\Gamma_{2}:=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

And what is eval $\left(\Gamma_{2}\right)$?

- weight-polynomial is $W_{C_{2}}(x)=x^{0}+1 x^{1}+10 x^{2}+10 x^{3}+5 x^{4}+5 x^{5}$
- eval $\left(\Gamma_{2}\right)=s_{4,3}^{1} \cdot s_{4,2}^{10} \cdot s_{4,1}^{10} \approx 6.36 \cdot 10^{-3}$
- \Rightarrow although mindist $\left(C_{1}\right)>\operatorname{mindist}\left(C_{2}\right), \Gamma_{2}$ is preferred over Γ_{1}

Results

$q=2, k=10:$
n 181 186 d 86 $\mathbf{8 8}$

$q=7, k=4:$
$q=7, k=5:$
$q=7, k=6:$

n	77
d	63

n	56	62	68
d	43	48	53

n	62	67	73	77
d	46	50	55	58

$$
q=9, k=5
$$

n	33
d	25

