Heuristic Construction Of "Good" Error-Correcting Linear Codes

Johannes Zwanzger

University of Bayreuth

Magdeburg November 17th, 2007

• A linear code C over \mathbb{F}_q of blocklength n and dimension k is a k-dimensional subspace of \mathbb{F}_q^n

- A linear code C over 𝔽_q of blocklength n and dimension k is a k-dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*

- A linear code C over 𝔽_q of blocklength n and dimension k is a k-dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*
- weight wt(c) of $c \in C$: number of nonzero components in c

- A linear code C over 𝔽_q of blocklength n and dimension k is a k-dimensional subspace of 𝔽ⁿ_q
- elements of C are called *codewords* and written as *row vectors*
- weight wt(c) of $c \in C$: number of nonzero components in c
- Hamming distance between $c, c' \in C$: dist(c, c') := wt(c c')

• The *minimum distance* of *C* is the minimum Hamming distance between any two *different* codewords of *C*.

- The *minimum distance* of *C* is the minimum Hamming distance between any two *different* codewords of *C*.
- In the linear case the minimum distance equals the minimum weight over all nonzero codewords in ${\cal C}$

- The *minimum distance* of *C* is the minimum Hamming distance between any two *different* codewords of *C*.
- In the linear case the minimum distance equals the minimum weight over all nonzero codewords in *C*
- C has minimum distance $d \Rightarrow up$ to $\lfloor \frac{d-1}{2} \rfloor$ errors can be corrected

- The *minimum distance* of *C* is the minimum Hamming distance between any two *different* codewords of *C*.
- In the linear case the minimum distance equals the minimum weight over all nonzero codewords in *C*
- C has minimum distance $d \Rightarrow up$ to $\lfloor \frac{d-1}{2} \rfloor$ errors can be corrected
- C can be described by a generator matrix $\Gamma \in \mathbb{F}_q^{k \times n}$, whose rows form a basis of C

generates a code with parameters n = 6, k = 3, d = 3 over \mathbb{F}_3 .

	(1)	0	0	1	0	$1 \rangle$	
Γ =	0	1	0	1	1	2	
	0	0	1	1	2	2 /	

generates a code with parameters n = 6, k = 3, d = 3 over \mathbb{F}_3 .

Observations:

• codewords arise via multiplication of \mathbb{F}_q^k with $\Gamma: C = \{v \Gamma : v \in \mathbb{F}_q^k\}$

	(1)	0	0	1	0	$1 \setminus$
Γ =	0	1	0	1	1	2
	0	0	1	1	2	2 /

generates a code with parameters n = 6, k = 3, d = 3 over \mathbb{F}_3 .

- codewords arise via multiplication of \mathbb{F}_q^k with $\Gamma: C = \{v \Gamma : v \in \mathbb{F}_q^k\}$
- the *j*-th component of a codeword c = (c₁, c₂, ..., c_n) = vΓ only depends from the *j*-th column of Γ: c_j = vΓ_{*j}

	(1)	0	0	1	0	$1 \setminus$
Γ =	0	1	0	1	1	2
	0	0	1	1	2	2 /

generates a code with parameters n = 6, k = 3, d = 3 over \mathbb{F}_3 .

- codewords arise via multiplication of \mathbb{F}_q^k with $\Gamma: C = \{v \Gamma : v \in \mathbb{F}_q^k\}$
- the *j*-th component of a codeword c = (c₁, c₂, ..., c_n) = vΓ only depends from the *j*-th column of Γ: c_j = vΓ_{*j}
- multiplying a column of Γ with $\lambda \in \mathbb{F}_q^*$ has no influence on the weights

	(1)	0	0	1	0	1	
Γ =	0	1	0	1	1	2	
	0	0	1	1	2	2 /	

generates a code with parameters n = 6, k = 3, d = 3 over \mathbb{F}_3 .

- codewords arise via multiplication of \mathbb{F}_q^k with $\Gamma: C = \{v \Gamma : v \in \mathbb{F}_q^k\}$
- the *j*-th component of a codeword c = (c₁, c₂, ..., c_n) = vΓ only depends from the *j*-th column of Γ: c_j = vΓ_{*j}
- multiplying a column of Γ with $\lambda \in \mathbb{F}_q^*$ has no influence on the weights

•
$$\lambda \in \mathbb{F}_q^*, v \in \mathbb{F}_q^k \Rightarrow wt(v\Gamma) = wt(\lambda v\Gamma)$$

Theorem

Let
$$t := \frac{q^k - 1}{q - 1}$$
 and $\Omega_{k,q} = (\omega_{\langle v \rangle, \langle u \rangle}) \in \mathbb{N}^{t \times t}$ be the matrix (well-)defined by

$$\omega_{\langle v \rangle, \langle u \rangle} := \begin{cases} 0 & \text{if } \langle v, u \rangle_{\mathbb{F}_q} = 0 \\ 1 & \text{else} \end{cases}$$

for $\langle v \rangle, \, \langle u \rangle \in PPG(k-1,q)$ with $v, \, u \in \mathbb{F}_q^{k^*}$. Then:

Existence of a nonredundant linear (n, k, d, q)-code \clubsuit Existence of a multiset $\{\langle u_1 \rangle, \langle u_2 \rangle, \dots, \langle u_n \rangle\} \subset PPG(k-1,q)$ so that

$$\sum_{i=1}^n \omega_{\langle \mathbf{v} \rangle, \langle u_i \rangle} \geq d$$

is true for each $\langle v \rangle \in PPG(k-1,q)$.

	0	0	0	0	1	1	1	1	1	1	1	1	1	
	0	1	1	1	0	0	0	1	1	1	2	2	2	\sum
	1	0	1	2	0	1	2	0	1	2	0	1	2	
001	1	0	1	1	0	1	1	0	1	1	0	1	1	4
010	0	1	1	1	0	0	0	1	1	1	1	1	1	4
011	1	1	1	0	0	1	1	1	1	0	1	0	1	4
012	1	1	0	1	0	1	1	1	0	1	1	1	0	3
100	0	0	0	0	1	1	1	1	1	1	1	1	1	3
101	1	0	1	1	1	1	0	1	1	0	1	1	0	4
102	1	0	1	1	1	0	1	1	0	1	1	0	1	4
1 1 0	0	1	1	1	1	1	1	1	1	1	0	0	0	4
$1 \ 1 \ 1 \ 1$	1	1	1	0	1	1	0	1	0	1	0	1	1	4
1 1 2	1	1	0	1	1	0	1	1	1	0	0	1	1	6
120	0	1	1	1	1	1	1	0	0	0	1	1	1	4
121	1	1	0	1	1	1	0	0	1	1	1	0	1	6
122	1	1	1	0	1	0	1	0	1	1	1	1	0	4

Input:

Input:

• code parameters n, k, d, q

Input:

- code parameters n, k, d, q
- initial column multiset X_0

Input:

- code parameters n, k, d, q
- initial column multiset X_0
- evaluation function $eval: \mathcal{P}(PPG(k-1,q)) \rightarrow \mathbb{R}$

Input:

- code parameters n, k, d, q
- initial column multiset X₀
- evaluation function $eval: \mathcal{P}(PPG(k-1,q)) \rightarrow \mathbb{R}$

Output: column multiset X for a (n, k, d, q)-code or FAILED

Input:

- code parameters n, k, d, q
- initial column multiset X_0
- evaluation function $eval: \mathcal{P}(PPG(k-1,q)) \rightarrow \mathbb{R}$

Output: column multiset X for a (n, k, d, q)-code or FAILED

- (1) Set $X \leftarrow X_0$.
- (2) For each $x \in PPG(k-1,q)$, compute $eval(X \cup \{x\})$.
- (3) Choose a point x^* maximizing the value in (2). Set $X \leftarrow X \cup \{x^*\}$.
- (4) If |X| < n, go to (2).
- (5) If $d_X \ge d$, return X; otherwise, return FAILED.

Observation:

• For each row of $\Omega_{k,q}$ there are exactly q^{k-1} columns with a '1'

Observation:

• For each row of $\Omega_{k,q}$ there are exactly q^{k-1} columns with a '1'

•
$$\rightsquigarrow p := \frac{q^{k-1}}{t} = \frac{(q-1)(q^{k-1})}{q^k - 1}$$

Observation:

• For each row of $\Omega_{k,q}$ there are exactly q^{k-1} columns with a '1'

•
$$\rightsquigarrow p := \frac{q}{t} = \frac{(q-1)(q)}{q^k-1}$$

Consequences:

Observation:

• For each row of $\Omega_{k,q}$ there are exactly q^{k-1} columns with a '1'

•
$$\rightsquigarrow p := rac{q^{k-1}}{t} = rac{(q-1)(q^{k-1})}{q^k - 1}$$

Consequences:

 $\langle v \rangle$:= arbitrary row index of $\Omega_{k,q}$

X' := random multiset of *m* column indizes $:= \{ \langle u_1 \rangle, \langle u_2 \rangle, \dots, \langle u_m \rangle \}$ $j \le m \in \mathbb{N}$

Observation:

• For each row of $\Omega_{k,q}$ there are exactly q^{k-1} columns with a '1'

•
$$\rightsquigarrow p := \frac{q^{k-1}}{t} = \frac{(q-1)(q^{k-1})}{q^k - 1}$$

Consequences:

 $\langle v \rangle :=$ arbitrary row index of $\Omega_{k,q}$

X' := random multiset of *m* column indizes $:= \{ \langle u_1 \rangle, \langle u_2 \rangle, \dots, \langle u_m \rangle \}$ $j \le m \in \mathbb{N}$

•
$$\operatorname{Prob}\left(\sum_{l=1}^{m} \omega_{\langle v \rangle, \langle u_l \rangle} = j\right) = p^j (1-p)^{m-j} {m \choose j} =: r_{m,j}$$

Observation:

• For each row of $\Omega_{k,q}$ there are exactly q^{k-1} columns with a '1'

•
$$\rightsquigarrow p := \frac{q^{k-1}}{t} = \frac{(q-1)(q^{k-1})}{q^k - 1}$$

Consequences:

 $\langle v \rangle$:= arbitrary row index of $\Omega_{k,q}$

X' := random multiset of *m* column indizes $:= \{ \langle u_1 \rangle, \langle u_2 \rangle, \dots, \langle u_m \rangle \}$ $j \le m \in \mathbb{N}$

•
$$\operatorname{Prob}\left(\sum_{l=1}^{m} \omega_{\langle \mathbf{v} \rangle, \langle u_l \rangle} = j\right) = p^j (1-p)^{m-j} {m \choose j} =: r_{m,j}$$

• $\operatorname{Prob}\left(\sum_{l=1}^{m} \omega_{\langle \mathbf{v} \rangle, \langle u_l \rangle} \ge j\right) = \sum_{l=j}^{m} r_{m,l} =: s_{m,j}$

Let n, k, d, q be fixed. Consider $X \subset PPG(k-1, q)$ with |X| := n' < n.

Let n, k, d, q be fixed. Consider $X \subset PPG(k-1, q)$ with |X| := n' < n.

Goal: Find a 'sensible' evaluation for X

Let n, k, d, q be fixed. Consider $X \subset PPG(k-1,q)$ with |X| := n' < n.

Goal: Find a 'sensible' evaluation for X

Approach:

 R_i := set of rows of $\Omega_{k,q}$ where sum 'over X' equals *i*

$$a_i := |R_i|$$

Y := random multisubset of PPG(k-1,q) with |Y| = n - n'

Let n, k, d, q be fixed. Consider $X \subset PPG(k-1,q)$ with |X| := n' < n.

Goal: Find a 'sensible' evaluation for X

Approach:

 R_i := set of rows of $\Omega_{k,q}$ where sum 'over X' equals *i*

 $a_i := |R_i|$

- Y := random multisubset of PPG(k-1,q) with |Y| = n n'
- $X \cup Y$ multiset for (n, k, d, q)-code \Leftrightarrow $\forall i \leq d-1$: for each row in R_i the row sum 'over Y' is $\geq d-i$

Let n, k, d, q be fixed. Consider $X \subset PPG(k-1,q)$ with |X| := n' < n.

Goal: Find a 'sensible' evaluation for X

Approach:

 R_i := set of rows of $\Omega_{k,q}$ where sum 'over X' equals i

 $a_i := |R_i|$

- Y := random multisubset of PPG(k-1,q) with |Y| = n n'
- $X \cup Y$ multiset for (n, k, d, q)-code \Leftrightarrow $\forall i \leq d - 1$: for each row in R_i the row sum 'over Y' is $\geq d - i$
- Probability for a single row is $s_{n-n',d-i}$

Let n, k, d, q be fixed. Consider $X \subset PPG(k-1,q)$ with |X| := n' < n.

Goal: Find a 'sensible' evaluation for X

Approach:

 R_i := set of rows of $\Omega_{k,q}$ where sum 'over X' equals i

 $a_i := |R_i|$

- Y := random multisubset of PPG(k-1,q) with |Y| = n n'
- $X \cup Y$ multiset for (n, k, d, q)-code \Leftrightarrow $\forall i \leq d - 1$: for each row in R_i the row sum 'over Y' is $\geq d - i$
- Probability for a single row is $s_{n-n',d-i}$
- Assumption of stochastic indipendence ~>...

$$eval(X) := \prod_{i=1}^{d-1} s_{n-n',d-i}^{a_i}$$

$$eval(X) := \prod_{i=1}^{d-1} s_{n-n',d-i}^{a_i}$$

Example

$$\Gamma_1 := \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array} \right)$$

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the evaluation of $\Gamma_1?$

$$eval(X) := \prod_{i=1}^{d-1} s_{n-n',d-i}^{a_i}$$

Example

$$\Gamma_1 := \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array} \right)$$

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the evaluation of Γ_1 ?

• weight-polynomial is $W_{C_1}(x) = x^0 + 15x^2 + 15x^4 + x^6$

$$eval(X) := \prod_{i=1}^{d-1} s_{n-n',d-i}^{a_i}$$

Example

$$\Gamma_1 := \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array} \right)$$

Assume we want to construct a linear (10, 5, 4, 2)-code. What is the evaluation of $\Gamma_1?$

• weight-polynomial is
$$W_{C_1}(x) = x^0 + 15x^2 + 15x^4 + x^6$$

• here:
$$p = \frac{16}{31} \Rightarrow s_{4,2} = \frac{656896}{923521} \Rightarrow eval(\Gamma_1) = \left(\frac{656896}{923521}\right)^{15} \approx 6.04 \cdot 10^{-3}$$

$$\Gamma_2 := \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

And what is $eval(\Gamma_2)$?

$$\Gamma_2 := \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

And what is $eval(\Gamma_2)$?

• weight-polynomial is $W_{C_2}(x) = x^0 + 1x^1 + 10x^2 + 10x^3 + 5x^4 + 5x^5$

$$\Gamma_2 := \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

And what is $eval(\Gamma_2)$?

- weight-polynomial is $W_{C_2}(x) = x^0 + 1x^1 + 10x^2 + 10x^3 + 5x^4 + 5x^5$
- $eval(\Gamma_2) = s_{4,3}^1 \cdot s_{4,2}^{10} \cdot s_{4,1}^{10} \approx 6.36 \cdot 10^{-3}$

$$\Gamma_2 := \left(\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

And what is $eval(\Gamma_2)$?

- weight-polynomial is $W_{C_2}(x) = x^0 + 1x^1 + 10x^2 + 10x^3 + 5x^4 + 5x^5$
- $eval(\Gamma_2) = s_{4,3}^1 \cdot s_{4,2}^{10} \cdot s_{4,1}^{10} \approx 6.36 \cdot 10^{-3}$
- \Rightarrow although *mindist*(C_1) > *mindist*(C_2), Γ_2 is preferred over Γ_1

Results

$q = 2, \ k = 10$:							
n	181	186					
d	86	88					

q = 5, k = 7:									
n	19	33	37	44	52				
d	10	20	23	28	34				

q = 7, k = 4:

n	77	
d	63	

q =	7,	k	=	5:
-----	----	---	---	----

n	56	62	68
d	43	48	53

q = 7, k = 6:

n	62	67	73	77
d	46	50	55	58

$$q = 9, \ k = 5$$
$$\boxed{\begin{array}{c|c}n & 33\\d & 25\end{array}}$$