A non-free \mathbb{Z}_4 -linear code of high minimum Lee distance

Johannes Zwanzger

University of Bayreuth

Thurnau April 12th, 2010

joint work with Michael Kiermaier

 Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:

 Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:

http://www.mathe2.uni-bayreuth.de/20er/

 Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:

http://www.mathe2.uni-bayreuth.de/20er/

• Gray image has parameters $[58, 2^7, 28]$, exceeding the linear upper bound of d = 27.

 Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:

http://www.mathe2.uni-bayreuth.de/20er/

- Gray image has parameters $[58, 2^7, 28]$, exceeding the linear upper bound of d = 27.
- Improves the known lower bound on the maximal size of binary block codes with n = 58 and d = 28 by 4 codewords (to our best knowledge).

 Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:

http://www.mathe2.uni-bayreuth.de/20er/

- Gray image has parameters $[58, 2^7, 28]$, exceeding the linear upper bound of d = 27.
- Improves the known lower bound on the maximal size of binary block codes with n = 58 and d = 28 by 4 codewords (to our best knowledge).
- Not free as \mathbb{Z}_4 -module.

• $C \mathbb{Z}_4$ -linear code of length $n :\Leftrightarrow C$ submodule of \mathbb{Z}_4^n

- $C \mathbb{Z}_4$ -linear code of length $n :\Leftrightarrow C$ submodule of \mathbb{Z}_4^n
- \exists unique pair of non-negative integers (r_1, r_2) s. t.

$$C\cong\mathbb{Z}_4^{r_1}\oplus 2\mathbb{Z}_4^{r_2}$$

as \mathbb{Z}_4 -module. (r_1, r_2) is the *shape* of *C*.

- $C \mathbb{Z}_4$ -linear code of length $n :\Leftrightarrow C$ submodule of \mathbb{Z}_4^n
- \exists unique pair of non-negative integers (r_1, r_2) s. t.

$C \cong \mathbb{Z}_4^{r_1} \oplus 2\mathbb{Z}_4^{r_2}$

as \mathbb{Z}_4 -module. (r_1, r_2) is the *shape* of *C*. • *C* is free as \mathbb{Z}_4 -module iff $r_2 = 0$.

- $C \mathbb{Z}_4$ -linear code of length $n :\Leftrightarrow C$ submodule of \mathbb{Z}_4^n
- \exists unique pair of non-negative integers (r_1, r_2) s. t.

$$C\cong\mathbb{Z}_4^{r_1}\oplus 2\mathbb{Z}_4^{r_2}$$

- as \mathbb{Z}_4 -module. (r_1, r_2) is the *shape* of *C*.
- *C* is free as \mathbb{Z}_4 -module iff $r_2 = 0$.
- $\mathbb{Z}_4^* = \{1, 3\}$: group of *units* of \mathbb{Z}_4 .

- $C \mathbb{Z}_4$ -linear code of length $n :\Leftrightarrow C$ submodule of \mathbb{Z}_4^n
- \exists unique pair of non-negative integers (r_1, r_2) s. t.

$$C\cong\mathbb{Z}_4^{r_1}\oplus 2\mathbb{Z}_4^{r_2}$$

as \mathbb{Z}_4 -module. (r_1, r_2) is the *shape* of *C*.

- *C* is free as \mathbb{Z}_4 -module iff $r_2 = 0$.
- $\mathbb{Z}_4^* = \{1, 3\}$: group of *units* of \mathbb{Z}_4 .
- $\mathsf{Rad}(\mathbb{Z}_4) = \mathbb{Z}_4 \setminus \mathbb{Z}_4^* = \{0, 2\}$: radical of \mathbb{Z}_4 .

- $C \mathbb{Z}_4$ -linear code of length $n :\Leftrightarrow C$ submodule of \mathbb{Z}_4^n
- \exists unique pair of non-negative integers (r_1, r_2) s. t.

$$C\cong\mathbb{Z}_4^{r_1}\oplus 2\mathbb{Z}_4^{r_2}$$

as \mathbb{Z}_4 -module. (r_1, r_2) is the *shape* of *C*.

- *C* is free as \mathbb{Z}_4 -module iff $r_2 = 0$.
- $\mathbb{Z}_4^* = \{1, 3\}$: group of *units* of \mathbb{Z}_4 .
- $\operatorname{Rad}(\mathbb{Z}_4) = \mathbb{Z}_4 \setminus \mathbb{Z}_4^* = \{0, 2\}$: radical of \mathbb{Z}_4 .
- $S := \{0, 1\}$: set of representatives of $\mathbb{Z}_4 / \mathsf{Rad}(\mathbb{Z}_4)$.

• $\Gamma \in \mathbb{Z}_{4}^{(r_1+r_2) \times n}$ generator matrix of $C :\Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_4 -module.

- $\Gamma \in \mathbb{Z}_{4}^{(r_1+r_2) \times n}$ generator matrix of $C :\Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_4 -module.
- r_1 rows of Γ contain at least one unit.

- $\Gamma \in \mathbb{Z}_{4}^{(r_1+r_2) \times n}$ generator matrix of $C :\Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_4 -module.
- r_1 rows of Γ contain at least one unit.
- r₂ rows have only entries from Rad(ℤ₄) (w.l.o.g. the last r₂ rows).

- $\Gamma \in \mathbb{Z}_{4}^{(r_1+r_2) \times n}$ generator matrix of $C :\Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_4 -module.
- r_1 rows of Γ contain at least one unit.
- r₂ rows have only entries from Rad(ℤ₄) (w.l.o.g. the last r₂ rows).

•
$$C = \{ \mathbf{v}^t \Gamma : \mathbf{v} \in \mathbb{Z}_4^{r_1} \times S^{r_2} \}.$$

- $\Gamma \in \mathbb{Z}_{4}^{(r_1+r_2) \times n}$ generator matrix of $C :\Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_4 -module.
- r_1 rows of Γ contain at least one unit.
- r₂ rows have only entries from Rad(ℤ₄) (w.l.o.g. the last r₂ rows).

•
$$C = \{ v^t \Gamma : v \in \mathbb{Z}_4^{r_1} \times S^{r_2} \}.$$

 v from above is uniquely determined by c = v^tΓ and called *information vector* of c.

Lee weight and Lee metric

•
$$w_{\text{Lee}} : \mathbb{Z}_4 \to \mathbb{N}, \quad \begin{cases} 0 & \mapsto 0 \\ 1, 3 & \mapsto 1 \\ 2 & \mapsto 2 \end{cases}$$

is the *Lee weight* on \mathbb{Z}_4 and extendable to \mathbb{Z}_4^n by componentwise addition.

is the *Lee weight* on \mathbb{Z}_4 and extendable to \mathbb{Z}_4^n by componentwise addition.

• $d_{\text{Lee}}(c,c') := w_{\text{Lee}}(c-c')$, the *Lee metric* on \mathbb{Z}_4^n .

is the *Lee weight* on \mathbb{Z}_4 and extendable to \mathbb{Z}_4^n by componentwise addition.

• $d_{\text{Lee}}(c,c') := w_{\text{Lee}}(c-c')$, the *Lee metric* on \mathbb{Z}_4^n .

is the *Lee weight* on \mathbb{Z}_4 and extendable to \mathbb{Z}_4^n by componentwise addition.

*d*_{Lee}(*c*, *c'*) := *w*_{Lee}(*c* − *c'*), the *Lee metric* on Zⁿ₄. *Minimum Lee distance* of *C*:

$$d_{\min}(C) := \min\{d_{\text{Lee}}(c,c') : c \neq c' \in C\}.$$

is the *Lee weight* on \mathbb{Z}_4 and extendable to \mathbb{Z}_4^n by componentwise addition.

*d*_{Lee}(*c*, *c'*) := *w*_{Lee}(*c* − *c'*), the *Lee metric* on Zⁿ₄. *Minimum Lee distance* of *C*:

$$d_{\min}(C) := \min\{d_{\text{Lee}}(c,c') : c \neq c' \in C\}.$$

• Due to linearity:

$$d_{\min}(C) = \min\{w_{\text{Lee}}(c) : 0 \neq c \in C\}.$$

• $\gamma: \mathbb{Z}_4 \to \mathbb{F}_2^2, \quad \begin{cases} 0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10 \end{cases}$

is an isometry between (\mathbb{Z}_4, d_{Lee}) and $(\mathbb{F}_2^2, d_{Ham})$, the *Gray map*.

• $\gamma: \mathbb{Z}_4 \to \mathbb{F}_2^2, \quad \begin{cases} 0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10 \end{cases}$

is an isometry between (\mathbb{Z}_4, d_{Lee}) and $(\mathbb{F}_2^2, d_{Ham})$, the *Gray map*.

• Again, we extend it to $\gamma : \mathbb{Z}_4^n \to \mathbb{F}_2^{2n}$.

• $\gamma: \mathbb{Z}_4 \to \mathbb{F}_2^2, \quad \begin{cases} 0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10 \end{cases}$

is an isometry between (\mathbb{Z}_4, d_{Lee}) and $(\mathbb{F}_2^2, d_{Ham})$, the *Gray map*.

- Again, we extend it to $\gamma : \mathbb{Z}_4^n \to \mathbb{F}_2^{2n}$.
- γ transforms any block code C ⊂ Zⁿ₄ into a binary code of same size and weights and double length.

• $\gamma: \mathbb{Z}_4 \to \mathbb{F}_2^2, \quad \begin{cases} 0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10 \end{cases}$

is an isometry between (\mathbb{Z}_4, d_{Lee}) and $(\mathbb{F}_2^2, d_{Ham})$, the *Gray map*.

• Again, we extend it to $\gamma : \mathbb{Z}_4^n \to \mathbb{F}_2^{2n}$.

- γ transforms any block code C ⊂ Zⁿ₄ into a binary code of same size and weights and double length.
- \mathbb{Z}_4 -linearity of *C* usually does not lead to \mathbb{F}_2 -linearity of $\gamma(C)$.

• $\mathcal{P} :=$ set of all free submodules of \mathbb{Z}_4^3 of rank one.

- $\mathcal{P} :=$ set of all free submodules of \mathbb{Z}_4^3 of rank one.
- $\mathcal{L} :=$ set of all free submodules of \mathbb{Z}_4^3 of rank two.

- $\mathcal{P} :=$ set of all free submodules of \mathbb{Z}_4^3 of rank one.
- $\mathcal{L} :=$ set of all free submodules of \mathbb{Z}_4^3 of rank two.
- \bullet Let $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$ the subset relation. The geometry

$$\mathsf{PHG}(2,\mathbb{Z}_4):=(\mathcal{P},\mathcal{L},\mathcal{I})$$

is called the projective Hjelmslev plane.

- $\mathcal{P} := \text{set of all free submodules of } \mathbb{Z}_4^3 \text{ of rank one.}$
- $\mathcal{L} :=$ set of all free submodules of \mathbb{Z}_4^3 of rank two.
- \bullet Let $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$ the subset relation. The geometry

$$\mathsf{PHG}(2,\mathbb{Z}_4):=(\mathcal{P},\mathcal{L},\mathcal{I})$$

is called the projective Hjelmslev plane.

*p*₁, *p*₂ ∈ *P* are *neighbors* :⇔ there are two distinct lines incident with *p*₁ and *p*₂.

• Neighbor relation is equivalence relation, $\mathcal{N} :=$ set of *neighbor classes*.

- Neighbor relation is equivalence relation, $\mathcal{N} :=$ set of *neighbor classes*.
- *p* ∈ *P* and *l* ∈ *L* are *neighbors* :⇔ *l* contains a neighbor of *p*.

- Neighbor relation is equivalence relation, $\mathcal{N} :=$ set of *neighbor classes*.
- *p* ∈ *P* and *l* ∈ *L* are *neighbors* :⇔ *l* contains a neighbor of *p*.
- If p = Z₄v for p ∈ P, v ∈ Z₄³ is called *coordinate* vector of p.

- Neighbor relation is equivalence relation, $\mathcal{N} :=$ set of *neighbor classes*.
- *p* ∈ *P* and *l* ∈ *L* are *neighbors* :⇔ *l* contains a neighbor of *p*.
- If p = Z₄v for p ∈ P, v ∈ Z₄³ is called *coordinate* vector of p.
- For each point exist two different coordinate vectors.

- Neighbor relation is equivalence relation, $\mathcal{N} :=$ set of *neighbor classes*.
- *p* ∈ *P* and *l* ∈ *L* are *neighbors* :⇔ *l* contains a neighbor of *p*.
- If p = Z₄v for p ∈ P, v ∈ Z₄³ is called *coordinate* vector of p.
- For each point exist two different coordinate vectors.
- The canonical one has as first unit a symbol 1 and is denoted by κ(p).

• For vectors $u = (u_1, u_2, u_3)^t$, $v = (v_1, v_2, v_3)^t \in \mathbb{Z}_4^3$, the *inner product* is

$$\langle u,v\rangle := u_1v_1 + u_2v_2 + u_3v_3.$$

• For vectors $u = (u_1, u_2, u_3)^t$, $v = (v_1, v_2, v_3)^t \in \mathbb{Z}_4^3$, the *inner product* is

$$\langle u,v\rangle := u_1v_1 + u_2v_2 + u_3v_3.$$

• The *orthogonal* module of $S \leq \mathbb{Z}_4^3$ is

$$\mathcal{S}^{\perp} := \{ u \in \mathbb{Z}_4^3 : \langle u, v
angle = 0 ext{ for all } v \in \mathcal{S} \}.$$

• For vectors $u = (u_1, u_2, u_3)^t$, $v = (v_1, v_2, v_3)^t \in \mathbb{Z}_4^3$, the *inner product* is

$$\langle u,v\rangle := u_1v_1 + u_2v_2 + u_3v_3.$$

• The *orthogonal* module of $S \leq \mathbb{Z}_4^3$ is

$$S^{\perp}:=\{u\in\mathbb{Z}_4^3:\langle u,v
angle=0 ext{ for all }v\in S\}.$$

• The orthogonal of a point is a line and vice versa: $\mathcal{L} = \{p^{\perp} : p \in \mathcal{P}\}$ and $\mathcal{P} = \{I^{\perp} : I \in \mathcal{L}\}.$

• For vectors $u = (u_1, u_2, u_3)^t$, $v = (v_1, v_2, v_3)^t \in \mathbb{Z}_4^3$, the *inner product* is

$$\langle u,v\rangle := u_1v_1 + u_2v_2 + u_3v_3.$$

• The *orthogonal* module of $S \leq \mathbb{Z}_4^3$ is

$$\mathcal{S}^{\perp}:=\{u\in\mathbb{Z}_4^3:\langle u,v
angle=0 ext{ for all }v\in\mathcal{S}\}.$$

Let *I* = *p*[⊥] and *v* a coordinate vector of *p*. Then *v* is also called a *coordinate vector* of *I*.

Let *I* = *p*[⊥] and *v* a coordinate vector of *p*. Then *v* is also called a *coordinate vector* of *I*.

• Let $p_1 = \mathbb{Z}_4 v_1$, $p_2 = \mathbb{Z}_4 v_2$ and $I = (\mathbb{Z}_4 u)^{\perp}$.

Let *I* = *p*[⊥] and *v* a coordinate vector of *p*. Then *v* is also called a *coordinate vector* of *I*.

• Let
$$p_1=\mathbb{Z}_4v_1,~p_2=\mathbb{Z}_4v_2$$
 and $l=(\mathbb{Z}_4u)^{\perp}.$

 p_1 and p_2 are neighbors $\Leftrightarrow 2(v_1 - v_2) = 0$.

Let *I* = *p*[⊥] and *v* a coordinate vector of *p*. Then *v* is also called a *coordinate vector* of *I*.

• Let
$$p_1 = \mathbb{Z}_4 v_1, \ p_2 = \mathbb{Z}_4 v_2$$
 and $I = (\mathbb{Z}_4 u)^{\perp}.$

 p_1 and p_2 are neighbors $\Leftrightarrow 2(v_1 - v_2) = 0$. p_i is incident with $I \Leftrightarrow \langle u, v_i \rangle = 0$.

Let *I* = *p*[⊥] and *v* a coordinate vector of *p*. Then *v* is also called a *coordinate vector* of *I*.

• Let
$$p_1=\mathbb{Z}_4v_1,~p_2=\mathbb{Z}_4v_2$$
 and $l=(\mathbb{Z}_4u)^{\perp}.$

 p_1 and p_2 are neighbors $\Leftrightarrow 2(v_1 - v_2) = 0$. p_i is incident with $I \Leftrightarrow \langle u, v_i \rangle = 0$. p_i and I are neighbors $\Leftrightarrow \langle u, v_i \rangle \in \operatorname{Rad}(\mathbb{Z}_4)$.

•
$$|\mathcal{P}| = |\mathcal{L}| = 28.$$

- $|\mathcal{P}| = |\mathcal{L}| = 28.$
- Each line contains 6 points, any point is incident with 6 lines.

- $|\mathcal{P}| = |\mathcal{L}| = 28.$
- Each line contains 6 points, any point is incident with 6 lines.

•
$$\#\mathcal{N}=7.$$

- $|\mathcal{P}| = |\mathcal{L}| = 28.$
- Each line contains 6 points, any point is incident with 6 lines.
- $\#\mathcal{N}=7.$
- Each neighbor class consists of 4 points.

- $|\mathcal{P}| = |\mathcal{L}| = 28.$
- Each line contains 6 points, any point is incident with 6 lines.
- $\#\mathcal{N}=7.$
- Each neighbor class consists of 4 points.
- Any line intersects 3 different neighbor classes, each in 2 points.

• $\mathcal{O} \subset \mathcal{P}$ is called a *hyperoval* in PHG(2, \mathbb{Z}_4) iff:

O ⊂ P is called a *hyperoval* in PHG(2, Z₄) iff:
#O = 7.

• $\mathcal{O} \subset \mathcal{P}$ is called a *hyperoval* in PHG(2, \mathbb{Z}_4) iff:

- $\#\mathcal{O} = 7$.
- \blacktriangleright Each line intersects ${\cal O}$ in at most two points.

- $\mathcal{O} \subset \mathcal{P}$ is called a *hyperoval* in PHG(2, \mathbb{Z}_4) iff:
 - $\#\mathcal{O}=7.$
 - \blacktriangleright Each line intersects ${\cal O}$ in at most two points.
- Such hyperovals exist!

• $\mathcal{O} \subset \mathcal{P}$ is called a *hyperoval* in PHG(2, \mathbb{Z}_4) iff:

- $\#\mathcal{O}=7.$
- Each line intersects \mathcal{O} in at most two points.
- Such hyperovals exist!

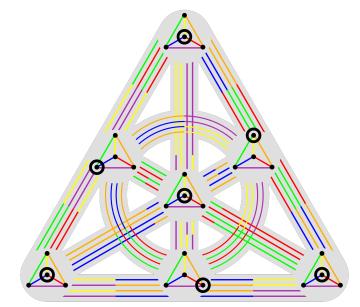
Lemma

Let \mathcal{O} be a hyperoval in PHG(2, \mathbb{Z}_4). Then:

- Each line meets O in zero or two points. This happens for 7 and 21 lines, respectively.
- From each neighbor class there is exactly one point in \mathcal{O} .

Maybe a picture says more than 8 slides...

Maybe a picture says more than 8 slides...



Construction of the new code

Construction of the new code

• Let \mathcal{O} be a hyperoval in $PHG(2, \mathbb{Z}_4)$ and

$$\mu: \mathcal{P} \to \mathsf{Rad}(\mathbb{Z}_4), \quad p \mapsto egin{cases} 0 & \text{if } p \in \mathcal{O} \\ 2 & \text{otherwise} \end{cases}$$

Construction of the new code

• Let \mathcal{O} be a hyperoval in $PHG(2, \mathbb{Z}_4)$ and

$$\mu: \mathcal{P} \to \mathsf{Rad}(\mathbb{Z}_4), \quad p \mapsto egin{cases} 0 & ext{if } p \in \mathcal{O} \\ 2 & ext{otherwise} \end{cases}$$

• For a point $p \in \mathcal{P}$ we define a vector

$$v_p = egin{pmatrix} \kappa(p) \ \mu(p) \end{pmatrix} \in \mathbb{Z}_4^3 imes \mathsf{Rad}(\mathbb{Z}_4).$$

Construction cont.

Construction cont.

Lemma

Let
$$\mathcal{P} = \{p_0, \dots, p_{27}\}$$
, $\Gamma := (v_{p_0}, \dots, v_{p_{27}}) \in \mathbb{Z}_4^{(3+1) \times 28}$
and C the code generated by Γ . Then:

$$\operatorname{Lee}_{\mathcal{C}} = 1 + 49X^{26} + 56X^{28} + 7X^{32} + 14X^{34} + X^{42}$$

and the subcode $(\mathbb{Z}_4^3 \times \{0\})\Gamma$ contains exactly the codewords of Lee weight 0, 28 and 32.

Main result:

Main result:

Corollary

Let
$$\delta := (0 \ 0 \ 0 \ 2)^t \in \mathbb{Z}_4^4$$
 and $\hat{\Gamma} := (\Gamma | \delta) \in \mathbb{Z}_4^{(3+1) \times 29}$. For the code \hat{C} generated by $\hat{\Gamma}$ holds

$$\operatorname{Lee}_{\hat{\mathcal{C}}} = 1 + 105X^{28} + 7X^{32} + 14X^{36} + X^{44}$$

Main result:

Corollary

Let $\delta := (0 \ 0 \ 0 \ 2)^t \in \mathbb{Z}_4^4$ and $\hat{\Gamma} := (\Gamma | \delta) \in \mathbb{Z}_4^{(3+1) \times 29}$. For the code \hat{C} generated by $\hat{\Gamma}$ holds

$$\operatorname{Lee}_{\hat{C}} = 1 + 105X^{28} + 7X^{32} + 14X^{36} + X^{44}$$

Remark

Claim does not depend on \mathcal{O} and $\kappa(-)$. For example,

 $\hat{\Gamma} := \begin{pmatrix} 0022 \ 0022 \ 1111 \ 1111 \ 0022 \ 1111 \ 1111 \ 0 \\ 0202 \ 1111 \ 0022 \ 1133 \ 1111 \ 0022 \ 1133 \ 0 \\ 1111 \ 0202 \ 0202 \ 1313 \ 1313 \ 1313 \ 0202 \ 0 \\ 0222 \ 0222 \ 0222 \ 2022 \ 220 \ 2202 \ 2202 \ 220 \ 220 \ 2202 \ 2202 \ 2202 \ 22$

M. Kiermaier, J. Zwanzger (Bayreuth)

A new \mathbb{Z}_4 -linear code

16 / 21

Any $c \in C$ can uniquely be written as $c = (u^t, s)^t \Gamma$. We distinguish a few cases for u and s:

Any $c \in C$ can uniquely be written as $c = (u^t, s)^t \Gamma$. We distinguish a few cases for u and s: 1. s = 0:

Any $c \in C$ can uniquely be written as $c = (u^t, s)^t \Gamma$. We distinguish a few cases for u and s: 1. s = 0:

• If $2u \neq 0$, consider $I := \mathbb{Z}_4 u^{\perp} \in \mathsf{PHG}(2, \mathbb{Z}_4)$:

$\langle u, \kappa(p_i) \rangle$	0	2	1 or 3	
#	6 times	6 times	16 times	

Any $c \in C$ can uniquely be written as $c = (u^t, s)^t \Gamma$. We distinguish a few cases for u and s: 1. s = 0:

• If $2u \neq 0$, consider $I := \mathbb{Z}_4 u^{\perp} \in \mathsf{PHG}(2, \mathbb{Z}_4)$:

$\langle u, \kappa(p_i) \rangle$	0	2	1 or 3	
#	6 times	6 times	16 times	

 \rightsquigarrow 56 codewords of Lee weight $6\cdot 2 + 16\cdot 1 = 28.$

Any $c \in C$ can uniquely be written as $c = (u^t, s)^t \Gamma$. We distinguish a few cases for u and s: 1. s = 0:

• If $2u \neq 0$, consider $I := \mathbb{Z}_4 u^{\perp} \in \mathsf{PHG}(2, \mathbb{Z}_4)$:

$\langle u, \kappa(p_i) \rangle$	0	2	1 or 3
#	6 times	6 times	16 times

→ 56 codewords of Lee weight 6 · 2 + 16 · 1 = 28.
If 2u = 0: u = 0 yields the zero codeword. Otherwise, choose u' with u = 2u'. Use ⟨u, p_i⟩ = 2⟨u', p_i⟩ and the table above.

Any $c \in C$ can uniquely be written as $c = (u^t, s)^t \Gamma$. We distinguish a few cases for u and s: 1. s = 0:

• If $2u \neq 0$, consider $I := \mathbb{Z}_4 u^{\perp} \in \mathsf{PHG}(2, \mathbb{Z}_4)$:

$\langle u, \kappa(p_i) \rangle$	0	2	1 or 3
#	6 times	6 times	16 times

→ 56 codewords of Lee weight 6 · 2 + 16 · 1 = 28.
If 2u = 0: u = 0 yields the zero codeword. Otherwise, choose u' with u = 2u'. Use ⟨u, p_i⟩ = 2⟨u', p_i⟩ and the table above.
→ 7 codewords of Lee weight 16 · 2 = 32 and one of weight zero.

2. *s* = 1:

- 2. *s* = 1:
 - If $2u \neq 0$, consider $I := \mathbb{Z}_4 u^{\perp} \in PHG(2, \mathbb{Z}_4)$.

- 2. *s* = 1:
 - If 2*u* ≠ 0, consider *l* := Z₄*u*[⊥] ∈ PHG(2, Z₄).
 If *l* ∩ *O* = Ø:

$\langle u, \kappa(p_i) \rangle$	0		2		1 or 3	
$\mu(p_i)$	0	2	0	2	0	2
#	$0 \times$	6×	3×	3×	4 ×	$12 \times$

- 2. *s* = 1:
 - If 2*u* ≠ 0, consider *l* := Z₄*u*[⊥] ∈ PHG(2, Z₄).
 If *l* ∩ O = Ø:

$\langle u, \kappa(p_i) \rangle$	() 2		0 2 1 or 3		2		or 3
$\mu(p_i)$	0	2	0	2	0	2		
#	$0 \times$	6×	3×	3×	4 ×	$12 \times$		

 \rightsquigarrow 14 codewords of Lee weight $9\cdot 2 + 16\cdot 1 = 34.$

- 2. *s* = 1:
 - If 2*u* ≠ 0, consider *l* := Z₄*u*[⊥] ∈ PHG(2, Z₄).
 If *l* ∩ O = Ø:

ζι	$\mu,\kappa(p_i) angle$	0 2 1 or		2		or 3	
	$\mu(p_i)$	0	2	0	2	0	2
	#	$0 \times$	6×	3×	3×	4 ×	$12 \times$

 \rightarrow 14 codewords of Lee weight 9 · 2 + 16 · 1 = 34. ► If $\#(I \cap \mathcal{O}) = 2$:

$\langle u, \kappa(p_i) \rangle$	0		2		1 or 3	
$\mu(p_i)$	0	2	0	2	0	2
#	$2 \times$	4 ×	1 imes	5×	4 ×	$12\times$

- 2. *s* = 1:
 - If 2*u* ≠ 0, consider *l* := Z₄*u*[⊥] ∈ PHG(2, Z₄).
 If *l* ∩ O = Ø:

ζι	$\mu,\kappa(p_i) angle$	0 2 1 or		2		or 3	
	$\mu(p_i)$	0	2	0	2	0	2
	#	$0 \times$	6×	3×	3×	4 ×	$12 \times$

 \rightarrow 14 codewords of Lee weight 9 · 2 + 16 · 1 = 34. ► If $\#(I \cap \mathcal{O}) = 2$:

$\langle u, \kappa(p_i) \rangle$	$\kappa(p_i)\rangle = 0$		2		2		1 or 3	
$\mu(p_i)$	0	2	0	2	0	2		
#	$2\times$	4×	1 imes	5×	4 ×	$12\times$		

 \rightsquigarrow 42 codewords of Lee weight $5\cdot 2 + 16\cdot 1 = 26.$

Continuation for s = 1:

Continuation for s = 1:

• If 2u = 0: u = 0 yields the last row of Γ . Otherwise:

$\langle u, \kappa(p_i) \rangle$	0		2	
$\mu(p_i)$	0	2	0	2
#	3×	9×	4 ×	$12 \times$

Continuation for s = 1:

• If 2u = 0: u = 0 yields the last row of Γ . Otherwise:

$\langle u, \kappa(p_i) \rangle$	()		2
$\mu(p_i)$	0 2		0 2	
#	3×	9×	4 ×	$12 \times$

 \rightsquigarrow 7 codewords of Lee weight $13\cdot 2=26$ and one of weight 42.

Continuation for s = 1:

• If 2u = 0: u = 0 yields the last row of Γ . Otherwise:

$\langle u, \kappa(p_i) \rangle$	0		2	
$\mu(p_i)$	0	2	0	2
#	3×	9×	4 ×	$12 \times$

 \rightsquigarrow 7 codewords of Lee weight $13\cdot 2=26$ and one of weight 42.

• Are there more examples of **non-free** Z₄-linear codes where the minimum distance of the Gray image exceeds the linear upper bound?

- Are there more examples of **non-free** Z₄-linear codes where the minimum distance of the Gray image exceeds the linear upper bound?
- Is A(58, 28) ≥ 128 for binary block codes already known?

- Are there more examples of **non-free** Z₄-linear codes where the minimum distance of the Gray image exceeds the linear upper bound?
- Is A(58, 28) ≥ 128 for binary block codes already known?

Thanks for your attention!