A non-free \mathbb{Z}_{4}-linear code of high minimum Lee distance

Johannes Zwanzger

University of Bayreuth

Thurnau
April 12th, 2010

joint work with Michael Kiermaier

Properties of the code

Properties of the code

- Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:

Properties of the code

- Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:
http://www.mathe2.uni-bayreuth.de/20er/

Properties of the code

- Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:
http://www.mathe2.uni-bayreuth.de/20er/
- Gray image has parameters $\left[58,2^{7}, 28\right]$, exceeding the linear upper bound of $d=27$.

Properties of the code

- Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:
http://www.mathe2.uni-bayreuth.de/20er/
- Gray image has parameters $\left[58,2^{7}, 28\right]$, exceeding the linear upper bound of $d=27$.
- Improves the known lower bound on the maximal size of binary block codes with $n=58$ and $d=28$ by 4 codewords (to our best knowledge).

Properties of the code

- Originally found by a heuristic computer search on good linear codes over finite chain rings, for results see:
http://www.mathe2.uni-bayreuth.de/20er/
- Gray image has parameters $\left[58,2^{7}, 28\right]$, exceeding the linear upper bound of $d=27$.
- Improves the known lower bound on the maximal size of binary block codes with $n=58$ and $d=28$ by 4 codewords (to our best knowledge).
- Not free as \mathbb{Z}_{4}-module.

\mathbb{Z}_{4}-linear codes

\mathbb{Z}_{4}-linear codes

- $C \mathbb{Z}_{4}$-linear code of length $n: \Leftrightarrow C$ submodule of \mathbb{Z}_{4}^{n}

\mathbb{Z}_{4}-linear codes

- $C \mathbb{Z}_{4}$-linear code of length $n: \Leftrightarrow C$ submodule of \mathbb{Z}_{4}^{n}
- \exists unique pair of non-negative integers $\left(r_{1}, r_{2}\right)$ s. t .

$$
C \cong \mathbb{Z}_{4}^{r_{1}} \oplus 2 \mathbb{Z}_{4}^{r_{2}}
$$

as \mathbb{Z}_{4}-module. $\left(r_{1}, r_{2}\right)$ is the shape of C.

\mathbb{Z}_{4}-linear codes

- $C \mathbb{Z}_{4}$-linear code of length $n: \Leftrightarrow C$ submodule of \mathbb{Z}_{4}^{n}
- \exists unique pair of non-negative integers $\left(r_{1}, r_{2}\right)$ s. t.

$$
C \cong \mathbb{Z}_{4}^{r_{1}} \oplus 2 \mathbb{Z}_{4}^{r_{2}}
$$

as \mathbb{Z}_{4}-module. $\left(r_{1}, r_{2}\right)$ is the shape of C.

- C is free as \mathbb{Z}_{4}-module iff $r_{2}=0$.

\mathbb{Z}_{4}-linear codes

- $C \mathbb{Z}_{4}$-linear code of length $n: \Leftrightarrow C$ submodule of \mathbb{Z}_{4}^{n}
- \exists unique pair of non-negative integers $\left(r_{1}, r_{2}\right)$ s. t.

$$
C \cong \mathbb{Z}_{4}^{r_{1}} \oplus 2 \mathbb{Z}_{4}^{r_{2}}
$$

as \mathbb{Z}_{4}-module. $\left(r_{1}, r_{2}\right)$ is the shape of C.

- C is free as \mathbb{Z}_{4}-module iff $r_{2}=0$.
- $\mathbb{Z}_{4}^{*}=\{1,3\}$: group of units of \mathbb{Z}_{4}.

\mathbb{Z}_{4}-linear codes

- $C \mathbb{Z}_{4}$-linear code of length $n: \Leftrightarrow C$ submodule of \mathbb{Z}_{4}^{n}
- \exists unique pair of non-negative integers $\left(r_{1}, r_{2}\right)$ s. t.

$$
C \cong \mathbb{Z}_{4}^{r_{1}} \oplus 2 \mathbb{Z}_{4}^{r_{2}}
$$

as \mathbb{Z}_{4}-module. $\left(r_{1}, r_{2}\right)$ is the shape of C.

- C is free as \mathbb{Z}_{4}-module iff $r_{2}=0$.
- $\mathbb{Z}_{4}^{*}=\{1,3\}$: group of units of \mathbb{Z}_{4}.
- $\operatorname{Rad}\left(\mathbb{Z}_{4}\right)=\mathbb{Z}_{4} \backslash \mathbb{Z}_{4}^{*}=\{0,2\}$: radical of \mathbb{Z}_{4}.

\mathbb{Z}_{4}-linear codes

- $C \mathbb{Z}_{4}$-linear code of length $n: \Leftrightarrow C$ submodule of \mathbb{Z}_{4}^{n}
- \exists unique pair of non-negative integers $\left(r_{1}, r_{2}\right)$ s. t.

$$
C \cong \mathbb{Z}_{4}^{r_{1}} \oplus 2 \mathbb{Z}_{4}^{r_{2}}
$$

as \mathbb{Z}_{4}-module. $\left(r_{1}, r_{2}\right)$ is the shape of C.

- C is free as \mathbb{Z}_{4}-module iff $r_{2}=0$.
- $\mathbb{Z}_{4}^{*}=\{1,3\}$: group of units of \mathbb{Z}_{4}.
- $\operatorname{Rad}\left(\mathbb{Z}_{4}\right)=\mathbb{Z}_{4} \backslash \mathbb{Z}_{4}^{*}=\{0,2\}$: radical of \mathbb{Z}_{4}.
- $S:=\{0,1\}$: set of representatives of $\mathbb{Z}_{4} / \operatorname{Rad}\left(\mathbb{Z}_{4}\right)$.

\mathbb{Z}_{4}-linear codes cont.

\mathbb{Z}_{4}-linear codes cont.

- $\Gamma \in \mathbb{Z}_{4}^{\left(r_{1}+r_{2}\right) \times n}$ generator matrix of $C: \Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_{4}-module.

\mathbb{Z}_{4}-linear codes cont.

- $\Gamma \in \mathbb{Z}_{4}^{\left(r_{1}+r_{2}\right) \times n}$ generator matrix of $C: \Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_{4}-module.
- r_{1} rows of Γ contain at least one unit.

\mathbb{Z}_{4}-linear codes cont.

- $\Gamma \in \mathbb{Z}_{4}^{\left(r_{1}+r_{2}\right) \times n}$ generator matrix of $C: \Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_{4}-module.
- r_{1} rows of Γ contain at least one unit.
- r_{2} rows have only entries from $\operatorname{Rad}\left(\mathbb{Z}_{4}\right)$ (w.l.o.g. the last r_{2} rows).

\mathbb{Z}_{4}-linear codes cont.

- $\Gamma \in \mathbb{Z}_{4}^{\left(r_{1}+r_{2}\right) \times n}$ generator matrix of $C: \Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_{4}-module.
- r_{1} rows of Γ contain at least one unit.
- r_{2} rows have only entries from $\operatorname{Rad}\left(\mathbb{Z}_{4}\right)$ (w.l.o.g. the last r_{2} rows).
- $C=\left\{v^{t} \Gamma: v \in \mathbb{Z}_{4}^{r_{1}} \times S^{r_{2}}\right\}$.

\mathbb{Z}_{4}-linear codes cont.

- $\Gamma \in \mathbb{Z}_{4}^{\left(r_{1}+r_{2}\right) \times n}$ generator matrix of $C: \Leftrightarrow$ rows of Γ generate C as \mathbb{Z}_{4}-module.
- r_{1} rows of Γ contain at least one unit.
- r_{2} rows have only entries from $\operatorname{Rad}\left(\mathbb{Z}_{4}\right)$ (w.l.o.g. the last r_{2} rows).
- $C=\left\{v^{t} \Gamma: v \in \mathbb{Z}_{4}^{r_{1}} \times S^{r_{2}}\right\}$.
- v from above is uniquely determined by $c=v^{t} \Gamma$ and called information vector of c.

Lee weight and Lee metric

Lee weight and Lee metric

- $w_{\text {Lee }}: \mathbb{Z}_{4} \rightarrow \mathbb{N}, \quad \begin{cases}0 & \mapsto 0 \\ 1,3 & \mapsto 1 \\ 2 & \mapsto 2\end{cases}$
is the Lee weight on \mathbb{Z}_{4} and extendable to \mathbb{Z}_{4}^{n} by componentwise addition.

Lee weight and Lee metric

- $w_{\text {Lee }}: \mathbb{Z}_{4} \rightarrow \mathbb{N}, \quad \begin{cases}0 & \mapsto 0 \\ 1,3 & \mapsto 1 \\ 2 & \mapsto 2\end{cases}$ is the Lee weight on \mathbb{Z}_{4} and extendable to \mathbb{Z}_{4}^{n} by componentwise addition.
- $d_{\text {Lee }}\left(c, c^{\prime}\right):=w_{\text {Lee }}\left(c-c^{\prime}\right)$, the Lee metric on \mathbb{Z}_{4}^{n}.

Lee weight and Lee metric

- $w_{\text {Lee }}: \mathbb{Z}_{4} \rightarrow \mathbb{N}, \quad \begin{cases}0 & \mapsto 0 \\ 1,3 & \mapsto 1 \\ 2 & \mapsto 2\end{cases}$ is the Lee weight on \mathbb{Z}_{4} and extendable to \mathbb{Z}_{4}^{n} by componentwise addition.
- $d_{\text {Lee }}\left(c, c^{\prime}\right):=w_{\text {Lee }}\left(c-c^{\prime}\right)$, the Lee metric on \mathbb{Z}_{4}^{n}.

Lee weight and Lee metric

- $w_{\text {Lee }}: \mathbb{Z}_{4} \rightarrow \mathbb{N}, \quad \begin{cases}0 & \mapsto 0 \\ 1,3 & \mapsto 1 \\ 2 & \mapsto 2\end{cases}$
is the Lee weight on \mathbb{Z}_{4} and extendable to \mathbb{Z}_{4}^{n} by componentwise addition.
- $d_{\text {Lee }}\left(c, c^{\prime}\right):=w_{\text {Lee }}\left(c-c^{\prime}\right)$, the Lee metric on \mathbb{Z}_{4}^{n}.
- Minimum Lee distance of C :

$$
d_{\min }(C):=\min \left\{d_{\text {Lee }}\left(c, c^{\prime}\right): c \neq c^{\prime} \in C\right\} .
$$

Lee weight and Lee metric

- $w_{\text {Lee }}: \mathbb{Z}_{4} \rightarrow \mathbb{N}, \quad \begin{cases}0 & \mapsto 0 \\ 1,3 & \mapsto 1 \\ 2 & \mapsto 2\end{cases}$
is the Lee weight on \mathbb{Z}_{4} and extendable to \mathbb{Z}_{4}^{n} by componentwise addition.
- $d_{\text {Lee }}\left(c, c^{\prime}\right):=w_{\text {Lee }}\left(c-c^{\prime}\right)$, the Lee metric on \mathbb{Z}_{4}^{n}.
- Minimum Lee distance of C :

$$
d_{\min }(C):=\min \left\{d_{\text {Lee }}\left(c, c^{\prime}\right): c \neq c^{\prime} \in C\right\} .
$$

- Due to linearity:

$$
d_{\min }(C)=\min \left\{w_{\mathrm{Lee}}(c): 0 \neq c \in C\right\}
$$

Transformation into a binary code

Transformation into a binary code

- $\gamma: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}^{2}, \quad \begin{cases}0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10\end{cases}$
is an isometry between $\left(\mathbb{Z}_{4}, d_{\text {Lee }}\right)$ and $\left(\mathbb{F}_{2}^{2}, d_{\text {Ham }}\right)$, the Gray map.

Transformation into a binary code

- $\gamma: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}^{2}, \quad \begin{cases}1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10\end{cases}$
is an isometry between $\left(\mathbb{Z}_{4}, d_{\text {Lee }}\right)$ and $\left(\mathbb{F}_{2}^{2}, d_{\text {Ham }}\right)$, the Gray map.
- Again, we extend it to $\gamma: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{F}_{2}^{2 n}$.

Transformation into a binary code

- $\gamma: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}^{2}, \quad \begin{cases}0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10\end{cases}$
is an isometry between $\left(\mathbb{Z}_{4}, d_{\text {Lee }}\right)$ and $\left(\mathbb{F}_{2}^{2}, d_{\text {Ham }}\right)$, the Gray map.
- Again, we extend it to $\gamma: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{F}_{2}^{2 n}$.
- γ transforms any block code $C \subset \mathbb{Z}_{4}^{n}$ into a binary code of same size and weights and double length.

Transformation into a binary code

- $\gamma: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}^{2}, \quad \begin{cases}0 & \mapsto 00 \\ 1 & \mapsto 01 \\ 2 & \mapsto 11 \\ 3 & \mapsto 10\end{cases}$
is an isometry between $\left(\mathbb{Z}_{4}, d_{\text {Lee }}\right)$ and $\left(\mathbb{F}_{2}^{2}, d_{\text {Ham }}\right)$, the Gray map.
- Again, we extend it to $\gamma: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{F}_{2}^{2 n}$.
- γ transforms any block code $C \subset \mathbb{Z}_{4}^{n}$ into a binary code of same size and weights and double length.
- \mathbb{Z}_{4}-linearity of C usually does not lead to \mathbb{F}_{2}-linearity of $\gamma(C)$.

The projective Hjelmslev plane

The projective Hjelmslev plane

- $\mathcal{P}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank one.

The projective Hjelmslev plane

- $\mathcal{P}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank one.
- $\mathcal{L}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank two.

The projective Hjelmslev plane

- $\mathcal{P}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank one.
- $\mathcal{L}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank two.
- Let $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$ the subset relation. The geometry

$$
\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right):=(\mathcal{P}, \mathcal{L}, \mathcal{I})
$$

is called the projective Hjelmslev plane.

The projective Hjelmslev plane

- $\mathcal{P}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank one.
- $\mathcal{L}:=$ set of all free submodules of \mathbb{Z}_{4}^{3} of rank two.
- Let $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$ the subset relation. The geometry

$$
\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right):=(\mathcal{P}, \mathcal{L}, \mathcal{I})
$$

is called the projective Hjelmslev plane.

- $p_{1}, p_{2} \in \mathcal{P}$ are neighbors : \Leftrightarrow there are two distinct lines incident with p_{1} and p_{2}.

Projective Hjelmslev plane cont.

Projective Hjelmslev plane cont.

- Neighbor relation is equivalence relation, $\mathcal{N}:=$ set of neighbor classes.

Projective Hjelmslev plane cont.

- Neighbor relation is equivalence relation, $\mathcal{N}:=$ set of neighbor classes.
- $p \in \mathcal{P}$ and $I \in \mathcal{L}$ are neighbors $: \Leftrightarrow I$ contains a neighbor of p.

Projective Hjelmslev plane cont.

- Neighbor relation is equivalence relation, $\mathcal{N}:=$ set of neighbor classes.
- $p \in \mathcal{P}$ and $I \in \mathcal{L}$ are neighbors $: \Leftrightarrow I$ contains a neighbor of p.
- If $p=\mathbb{Z}_{4} v$ for $p \in \mathcal{P}, v \in \mathbb{Z}_{4}^{3}$ is called coordinate vector of p.

Projective Hjelmslev plane cont.

- Neighbor relation is equivalence relation, $\mathcal{N}:=$ set of neighbor classes.
- $p \in \mathcal{P}$ and $I \in \mathcal{L}$ are neighbors $: \Leftrightarrow I$ contains a neighbor of p.
- If $p=\mathbb{Z}_{4} v$ for $p \in \mathcal{P}, v \in \mathbb{Z}_{4}^{3}$ is called coordinate vector of p.
- For each point exist two different coordinate vectors.

Projective Hjelmslev plane cont.

- Neighbor relation is equivalence relation, $\mathcal{N}:=$ set of neighbor classes.
- $p \in \mathcal{P}$ and $I \in \mathcal{L}$ are neighbors $: \Leftrightarrow I$ contains a neighbor of p.
- If $p=\mathbb{Z}_{4} v$ for $p \in \mathcal{P}, v \in \mathbb{Z}_{4}^{3}$ is called coordinate vector of p.
- For each point exist two different coordinate vectors.
- The canonical one has as first unit a symbol 1 and is denoted by $\kappa(p)$.

Projective Hjelmslev plane cont.

Projective Hjelmslev plane cont.

- For vectors $u=\left(u_{1}, u_{2}, u_{3}\right)^{t}, v=\left(v_{1}, v_{2}, v_{3}\right)^{t} \in \mathbb{Z}_{4}^{3}$, the inner product is

$$
\langle u, v\rangle:=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

Projective Hjelmslev plane cont.

- For vectors $u=\left(u_{1}, u_{2}, u_{3}\right)^{t}, v=\left(v_{1}, v_{2}, v_{3}\right)^{t} \in \mathbb{Z}_{4}^{3}$, the inner product is

$$
\langle u, v\rangle:=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

- The orthogonal module of $S \leq \mathbb{Z}_{4}^{3}$ is

$$
S^{\perp}:=\left\{u \in \mathbb{Z}_{4}^{3}:\langle u, v\rangle=0 \text { for all } v \in S\right\}
$$

Projective Hjelmslev plane cont.

- For vectors $u=\left(u_{1}, u_{2}, u_{3}\right)^{t}, v=\left(v_{1}, v_{2}, v_{3}\right)^{t} \in \mathbb{Z}_{4}^{3}$, the inner product is

$$
\langle u, v\rangle:=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

- The orthogonal module of $S \leq \mathbb{Z}_{4}^{3}$ is

$$
S^{\perp}:=\left\{u \in \mathbb{Z}_{4}^{3}:\langle u, v\rangle=0 \text { for all } v \in S\right\}
$$

- The orthogonal of a point is a line and vice versa: $\mathcal{L}=\left\{p^{\perp}: p \in \mathcal{P}\right\}$ and $\mathcal{P}=\left\{I^{\perp}: I \in \mathcal{L}\right\}$.

Projective Hjelmslev plane cont.

- For vectors $u=\left(u_{1}, u_{2}, u_{3}\right)^{t}, v=\left(v_{1}, v_{2}, v_{3}\right)^{t} \in \mathbb{Z}_{4}^{3}$, the inner product is

$$
\langle u, v\rangle:=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

- The orthogonal module of $S \leq \mathbb{Z}_{4}^{3}$ is

$$
S^{\perp}:=\left\{u \in \mathbb{Z}_{4}^{3}:\langle u, v\rangle=0 \text { for all } v \in S\right\}
$$

- The orthogonal of a point is a line and vice versa: $\mathcal{L}=\left\{p^{\perp}: p \in \mathcal{P}\right\}$ and $\mathcal{P}=\left\{I^{\perp}: I \in \mathcal{L}\right\}$.
- For $p \in \mathcal{P}, I \in \mathcal{L}: p^{\perp^{\perp}}=p, I^{\perp \perp}=I$.

Projective Hjelmslev plane cont.

Projective Hjelmslev plane cont.

- Let $I=p^{\perp}$ and v a coordinate vector of p. Then v is also called a coordinate vector of I.

Projective Hjelmslev plane cont.

- Let $I=p^{\perp}$ and v a coordinate vector of p. Then v is also called a coordinate vector of I.
- Let $p_{1}=\mathbb{Z}_{4} v_{1}, p_{2}=\mathbb{Z}_{4} v_{2}$ and $I=\left(\mathbb{Z}_{4} u\right)^{\perp}$.

Projective Hjelmslev plane cont.

- Let $I=p^{\perp}$ and v a coordinate vector of p. Then v is also called a coordinate vector of I.
- Let $p_{1}=\mathbb{Z}_{4} v_{1}, p_{2}=\mathbb{Z}_{4} v_{2}$ and $I=\left(\mathbb{Z}_{4} u\right)^{\perp}$.
p_{1} and p_{2} are neighbors $\Leftrightarrow 2\left(v_{1}-v_{2}\right)=0$.

Projective Hjelmslev plane cont.

- Let $I=p^{\perp}$ and v a coordinate vector of p. Then v is also called a coordinate vector of l.
- Let $p_{1}=\mathbb{Z}_{4} v_{1}, p_{2}=\mathbb{Z}_{4} v_{2}$ and $I=\left(\mathbb{Z}_{4} u\right)^{\perp}$.
p_{1} and p_{2} are neighbors $\Leftrightarrow 2\left(v_{1}-v_{2}\right)=0$. p_{i} is incident with $I \Leftrightarrow\left\langle u, v_{i}\right\rangle=0$.

Projective Hjelmslev plane cont.

- Let $I=p^{\perp}$ and v a coordinate vector of p. Then v is also called a coordinate vector of I.
- Let $p_{1}=\mathbb{Z}_{4} v_{1}, p_{2}=\mathbb{Z}_{4} v_{2}$ and $I=\left(\mathbb{Z}_{4} u\right)^{\perp}$.
p_{1} and p_{2} are neighbors $\Leftrightarrow 2\left(v_{1}-v_{2}\right)=0$.
p_{i} is incident with $I \Leftrightarrow\left\langle u, v_{i}\right\rangle=0$.
p_{i} and I are neighbors $\Leftrightarrow\left\langle u, v_{i}\right\rangle \in \operatorname{Rad}\left(\mathbb{Z}_{4}\right)$.

Some numbers

Some numbers

- $|\mathcal{P}|=|\mathcal{L}|=28$.

Some numbers

- $|\mathcal{P}|=|\mathcal{L}|=28$.
- Each line contains 6 points, any point is incident with 6 lines.

Some numbers

- $|\mathcal{P}|=|\mathcal{L}|=28$.
- Each line contains 6 points, any point is incident with 6 lines.
- $\# \mathcal{N}=7$.

Some numbers

- $|\mathcal{P}|=|\mathcal{L}|=28$.
- Each line contains 6 points, any point is incident with 6 lines.
- $\# \mathcal{N}=7$.
- Each neighbor class consists of 4 points.

Some numbers

- $|\mathcal{P}|=|\mathcal{L}|=28$.
- Each line contains 6 points, any point is incident with 6 lines.
- $\# \mathcal{N}=7$.
- Each neighbor class consists of 4 points.
- Any line intersects 3 different neighbor classes, each in 2 points.

Hyperovals

Hyperovals

- $\mathcal{O} \subset \mathcal{P}$ is called a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ iff:

Hyperovals

- $\mathcal{O} \subset \mathcal{P}$ is called a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ iff: - $\# \mathcal{O}=7$.

Hyperovals

- $\mathcal{O} \subset \mathcal{P}$ is called a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ iff:
- $\# \mathcal{O}=7$.
- Each line intersects \mathcal{O} in at most two points.

Hyperovals

- $\mathcal{O} \subset \mathcal{P}$ is called a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ iff:
- $\# \mathcal{O}=7$.
- Each line intersects \mathcal{O} in at most two points.
- Such hyperovals exist!

Hyperovals

- $\mathcal{O} \subset \mathcal{P}$ is called a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ iff:
- $\# \mathcal{O}=7$.
- Each line intersects \mathcal{O} in at most two points.
- Such hyperovals exist!

Lemma

Let \mathcal{O} be a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$. Then:

- Each line meets \mathcal{O} in zero or two points. This happens for 7 and 21 lines, respectively.
- From each neighbor class there is exactly one point in \mathcal{O}.

Maybe a picture says more than 8 slides...

Maybe a picture says more than 8 slides...

Construction of the new code

Construction of the new code

- Let \mathcal{O} be a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ and

$$
\mu: \mathcal{P} \rightarrow \operatorname{Rad}\left(\mathbb{Z}_{4}\right), \quad p \mapsto \begin{cases}0 & \text { if } p \in \mathcal{O} \\ 2 & \text { otherwise }\end{cases}
$$

Construction of the new code

- Let \mathcal{O} be a hyperoval in $\operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$ and

$$
\mu: \mathcal{P} \rightarrow \operatorname{Rad}\left(\mathbb{Z}_{4}\right), \quad p \mapsto \begin{cases}0 & \text { if } p \in \mathcal{O} \\ 2 & \text { otherwise }\end{cases}
$$

- For a point $p \in \mathcal{P}$ we define a vector

$$
v_{p}=\binom{\kappa(p)}{\mu(p)} \in \mathbb{Z}_{4}^{3} \times \operatorname{Rad}\left(\mathbb{Z}_{4}\right)
$$

Construction cont.

Construction cont.

Lemma

Let $\mathcal{P}=\left\{p_{0}, \ldots, p_{27}\right\}, \Gamma:=\left(v_{p_{0}}, \ldots, v_{p_{2}}\right) \in \mathbb{Z}_{4}^{(3+1) \times 28}$ and C the code generated by Γ. Then:

$$
\text { Lee }_{C}=1+49 X^{26}+56 X^{28}+7 X^{32}+14 X^{34}+X^{42}
$$

and the subcode $\left(\mathbb{Z}_{4}^{3} \times\{0\}\right) \Gamma$ contains exactly the codewords of Lee weight 0,28 and 32.

Main result:

Main result:

Corollary

Let $\delta:=\left(\begin{array}{llll}0 & 0 & 0 & 2\end{array}\right)^{t} \in \mathbb{Z}_{4}^{4}$ and $\hat{\Gamma}:=(\Gamma \mid \delta) \in \mathbb{Z}_{4}^{(3+1) \times 29}$. For the code \hat{C} generated by $\hat{\Gamma}$ holds

$$
\operatorname{Lee}_{\hat{c}}=1+105 X^{28}+7 X^{32}+14 X^{36}+X^{44} .
$$

Main result:

Corollary

Let $\delta:=\left(\begin{array}{llll}0 & 0 & 0 & 2\end{array}\right)^{t} \in \mathbb{Z}_{4}^{4}$ and $\hat{\Gamma}:=(\Gamma \mid \delta) \in \mathbb{Z}_{4}^{(3+1) \times 29}$. For the code \hat{C} generated by $\hat{\Gamma}$ holds

$$
\operatorname{Lee}_{\hat{C}}=1+105 X^{28}+7 X^{32}+14 X^{36}+X^{44} .
$$

Remark

Claim does not depend on \mathcal{O} and $\kappa(-)$. For example,

$$
\hat{\Gamma}:=\left(\begin{array}{llllll}
00220022 & 1111 & 1111 & 00221111 & 1111 & 0 \\
0202 & 1111 & 0022 & 1133 & 1111 & 0022 \\
11133 & 0 \\
1111 & 0202 & 0202 & 1313 & 1313 & 1313 \\
0222 & 0222 & 0222 & 2022 & 2202 & 2202 \\
2220 & 2
\end{array}\right)
$$

Proof of the lemma

Proof of the lemma

Any $c \in C$ can uniquely be written as $c=\left(u^{t}, s\right)^{t} \Gamma$. We distinguish a few cases for u and s :

Proof of the lemma

Any $c \in C$ can uniquely be written as $c=\left(u^{t}, s\right)^{t} \Gamma$. We distinguish a few cases for u and s :

1. $s=0$:

Proof of the lemma

Any $c \in C$ can uniquely be written as $c=\left(u^{t}, s\right)^{t} \Gamma$. We distinguish a few cases for u and s :

1. $s=0$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0	2	1 or 3
$\#$	6 times	6 times	16 times

Proof of the lemma

Any $c \in C$ can uniquely be written as $c=\left(u^{t}, s\right)^{t} \Gamma$. We distinguish a few cases for u and s :

1. $s=0$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0	2	1 or 3
$\#$	6 times	6 times	16 times

$\rightsquigarrow 56$ codewords of Lee weight $6 \cdot 2+16 \cdot 1=28$.

Proof of the lemma

Any $c \in C$ can uniquely be written as $c=\left(u^{t}, s\right)^{t} \Gamma$. We distinguish a few cases for u and s :

1. $s=0$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0	2	1 or 3
$\#$	6 times	6 times	16 times

$\rightsquigarrow 56$ codewords of Lee weight $6 \cdot 2+16 \cdot 1=28$.

- If $2 u=0: u=0$ yields the zero codeword.

Otherwise, choose u^{\prime} with $u=2 u^{\prime}$. Use
$\left\langle u, p_{i}\right\rangle=2\left\langle u^{\prime}, p_{i}\right\rangle$ and the table above.

Proof of the lemma

Any $c \in C$ can uniquely be written as $c=\left(u^{t}, s\right)^{t} \Gamma$. We distinguish a few cases for u and s :

1. $s=0$:

- If $2 u \neq 0$, consider $l:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0	2	1 or 3
$\#$	6 times	6 times	16 times

$\rightsquigarrow 56$ codewords of Lee weight $6 \cdot 2+16 \cdot 1=28$.

- If $2 u=0: u=0$ yields the zero codeword.

Otherwise, choose u^{\prime} with $u=2 u^{\prime}$. Use $\left\langle u, p_{i}\right\rangle=2\left\langle u^{\prime}, p_{i}\right\rangle$ and the table above.
$\rightsquigarrow 7$ codewords of Lee weight $16 \cdot 2=32$ and one of weight zero.

Proof cont.

Proof cont.

2. $s=1$:

Proof cont.

2. $s=1$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$.

Proof cont.

2. $s=1$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$.
- If $I \cap \mathcal{O}=\emptyset$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2		1 or 3	
$\mu\left(p_{i}\right)$	0	2	0	2	0	2
$\#$	$0 \times$	$6 \times$	$3 \times$	$3 \times$	$4 \times$	$12 \times$

Proof cont.

2. $s=1$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$.
- If $I \cap \mathcal{O}=\emptyset$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2		1 or 3	
$\mu\left(p_{i}\right)$	0	2	0	2	0	2
$\#$	$0 \times$	$6 \times$	$3 \times$	$3 \times$	$4 \times$	$12 \times$

$\rightsquigarrow 14$ codewords of Lee weight $9 \cdot 2+16 \cdot 1=34$.

Proof cont.

2. $s=1$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$.
- If $I \cap \mathcal{O}=\emptyset$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2		1 or 3	
$\mu\left(p_{i}\right)$	0	2	0	2	0	2
$\#$	$0 \times$	$6 \times$	$3 \times$	$3 \times$	$4 \times$	$12 \times$

$\rightsquigarrow 14$ codewords of Lee weight $9 \cdot 2+16 \cdot 1=34$.

- If $\#(I \cap \mathcal{O})=2$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2		1 or 3	
$\mu\left(p_{i}\right)$	0	2	0	2	0	2
$\#$	$2 \times$	$4 \times$	$1 \times$	$5 \times$	$4 \times$	$12 \times$

Proof cont.

2. $s=1$:

- If $2 u \neq 0$, consider $I:=\mathbb{Z}_{4} u^{\perp} \in \operatorname{PHG}\left(2, \mathbb{Z}_{4}\right)$.
- If $I \cap \mathcal{O}=\emptyset$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2		1 or 3	
$\mu\left(p_{i}\right)$	0	2	0	2	0	2
$\#$	$0 \times$	$6 \times$	$3 \times$	$3 \times$	$4 \times$	$12 \times$

$\rightsquigarrow 14$ codewords of Lee weight $9 \cdot 2+16 \cdot 1=34$.

- If $\#(I \cap \mathcal{O})=2$:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2		1 or 3	
$\mu\left(p_{i}\right)$	0	2	0	2	0	2
$\#$	$2 \times$	$4 \times$	$1 \times$	$5 \times$	$4 \times$	$12 \times$

$\rightsquigarrow 42$ codewords of Lee weight $5 \cdot 2+16 \cdot 1=26$.

Proof cont.

Proof cont.

Continuation for $s=1$:

Proof cont.

Continuation for $s=1$:

- If $2 u=0: u=0$ yields the last row of Γ. Otherwise:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2	
$\mu\left(p_{i}\right)$	0	2	0	2
$\#$	$3 \times$	$9 \times$	$4 \times$	$12 \times$

Proof cont.

Continuation for $s=1$:

- If $2 u=0: u=0$ yields the last row of Γ. Otherwise:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2	
$\mu\left(p_{i}\right)$	0	2	0	2
$\#$	$3 \times$	$9 \times$	$4 \times$	$12 \times$

$\rightsquigarrow 7$ codewords of Lee weight $13 \cdot 2=26$ and one of weight 42.

Proof cont.

Continuation for $s=1$:

- If $2 u=0: u=0$ yields the last row of Γ. Otherwise:

$\left\langle u, \kappa\left(p_{i}\right)\right\rangle$	0		2	
$\mu\left(p_{i}\right)$	0	2	0	2
$\#$	$3 \times$	$9 \times$	$4 \times$	$12 \times$

$\rightsquigarrow 7$ codewords of Lee weight $13 \cdot 2=26$ and one of weight 42.

Questions to the audience

Questions to the audience

- Are there more examples of non-free \mathbb{Z}_{4}-linear codes where the minimum distance of the Gray image exceeds the linear upper bound?

Questions to the audience

- Are there more examples of non-free \mathbb{Z}_{4}-linear codes where the minimum distance of the Gray image exceeds the linear upper bound?
- Is $A(58,28) \geq 128$ for binary block codes already known?

Questions to the audience

- Are there more examples of non-free \mathbb{Z}_{4}-linear codes where the minimum distance of the Gray image exceeds the linear upper bound?
- Is $A(58,28) \geq 128$ for binary block codes already known?

Thanks for your attention!

